Introduction

This is a time of tremendous opportunity for engineers. The demand for professionals with the capability to make a difference to our planet, improve our infrastructure, make health-related advances and innovate technology have never been greater.

Temple Engineering is a rising institution — consistently improving in the rankings, with rapid expansion of research and more than tripling its student body size in the last 12 years. The College is the fastest growing school at Temple University, however it is still small enough to have a tight knit community and small class sizes. While the school is experiencing rapid changes, one thing has been constant; the commitment to provide affordable and high quality education to a diverse and vibrant student population.

The College's programs are accredited by the national accreditation board, ABET. Upgrades to the curriculum are always ongoing, so that students receive the best cutting-edge and relevant knowledge. This is evident in the excellent job placement rates — among the highest at the University — with our graduates hired by companies like Verizon, Boeing, Lockheed Martin, Pennoni Construction, NASA, PennDot, PGW, Turner Construction, Metrologic and many more.

Mission

The College of Engineering (COE) mission is to provide students with a high-quality and globally-competitive learning experience in engineering, engineering technology and the applied sciences. We aim to equip our engineering graduates to be confident professionals with the technical, problem-solving, and communication skills required to succeed in industry and contribute to the betterment of our society.

The College fosters the creation of knowledge through engineering and cross-disciplinary applied research. Great value is placed on scholarship, integrity, practice and service aimed at improving the quality of life and the economic viability of our society. This value system is reflected in how we assess faculty for promotion and tenure and how we grade student work.

We strive to pursue these objectives in a learning environment that celebrates ethnic and gender diversity, respects experience, and encourages problem solving through teamwork.

The college offers undergraduate curricula in engineering and engineering technology. Our engineering programs, leading to the Bachelor of Science in Engineering degree, prepare students for positions in engineering that require a broad preparation in mathematics and the engineering sciences at the entry level. They are recommended for those who expect to become registered professional engineers, pursue an advanced degree, or become involved in conceptual design, planning, research, and development in industry. The programs in engineering technology, which lead to the Bachelor of Science in Engineering Technology degree, educate students for careers as applied engineering professionals, translating concepts into functioning systems and supervising subsequent implementation by technicians and craftsmen.

Contact Us

https://engineering.temple.edu/

College of Engineering
1947 N. 12th Street
Philadelphia, PA 19122

Center for Academic Advising and Student Affairs
Room 349
engradvr@temple.edu

Dean’s Office

Keya Sadeghipour, Ph.D.
Dean
215-204-8780
keya.sadeghipour@temple.edu

David Brookstein, Sc.D.
Senior Associate Dean
215-204-4674
david.brookstein@temple.edu

Admissions

See Undergraduate Admissions for more details.
Program Information

All engineering programs lead to a Bachelor of Science degree in the following fields of study:

- Bioengineering (B.S.BioE.) with a concentration in Cellular Engineering
- Bioengineering (B.S.BioE.) with a concentration in Engineering Devices
- Bioengineering (B.S.BioE.) with a concentration in Pre-Health
- Civil Engineering (B.S.C.E.)
- Civil Engineering with a concentration in Environmental Engineering (B.S.C.E.)
- Electrical Engineering (B.S.E.E.)
- Electrical Engineering with a concentration in Bioelectrical Engineering (B.S.E.E.)
- Electrical Engineering with a concentration in Computer Engineering (B.S.E.E.)
- Engineering (B.S.E.)
- Environmental Engineering (B.S. Env.E.)
- Industrial and Systems Engineering (B.S.I.S.E.)
- Mechanical Engineering (B.S.M.E.)

Engineering Technology

These programs lead to a Bachelor of Science in Engineering Technology (B.S.E.T.) degree.

- Construction Engineering Technology
- Engineering Technology

Accreditation

The undergraduate programs in Bioengineering, Civil Engineering, Electrical Engineering, Engineering and Mechanical Engineering are accredited by the Engineering Accreditation Commission (EAC) of ABET, https://www.abet.org.

The Environmental Engineering program, introduced in Fall of 2015, will be seeking accreditation during the next review cycle after graduating the first cohort of students. The Industrial and Systems Engineering program, introduced in Fall 2018, will be seeking accreditation after graduating its first cohort of students.

ABET is a non-profit and non-governmental accrediting agency for academic programs in the disciplines of applied science, computing, engineering, and engineering technology recognized by the Council for Higher Education Accreditation (CHEA).

Honors Program

For current information on the College Honors Program, contact Dr. Vallorie Peridier, Coordinator, by phone at 215-204-7143 or by e-mail at vallorie.peridier@temple.edu.

Cooperative Education & Internship

Students in the co-op program work a minimum of 35 hours a week in positions related to their degree, while considered full-time students, gaining at least one semester of professional relevant work experience. These students have the same course requirements so it may take additional time to complete the degree. College of Engineering students may register and receive technical elective credits for their work experience with the co-op courses (ENGR 2181, ENGR 3181).

Relevant work experience may also be gained through internships. The positions are typically available during the summer terms, allowing students to stay on the traditional four years academic plan while obtaining professional engineering experience.

A dedicated career development team in the College of Engineering Dean's Office helps guide students through the co-op program and advises on career resources. For more information contact Michael Madera by phone at 215-204-2537 or by e-mail to michael.madera@temple.edu.

+1 Bachelor to Master's Accelerated Degree Program

High-achieving undergraduates can earn both a bachelor's degree and a master's degree within five years. Students apply for this program in sophomore year, and three technical level undergraduate courses are taken in place of graduate-level courses during junior and senior years. After the B.S. degree is earned, one graduate-level course is taken in the summer followed by full-time study in the subsequent Fall and Spring semesters to complete the master's degree study.
The +1 program is offered in the following areas:

- Bachelor of Science in Bioengineering & Master of Science in Bioengineering
- Bachelor of Science in Civil Engineering & Master of Science in Civil Engineering
- Bachelor of Science in Civil Engineering & Master of Science in Environmental Engineering
- Bachelor of Science in Electrical Engineering & Master of Science in Electrical Engineering
- Bachelor of Science in Electrical Engineering (Computer Engineering concentration) & Master of Science in Electrical Engineering
- Bachelor of Science in Environmental Engineering & Master of Science in Environmental Engineering
- Bachelor of Science in Mechanical Engineering & Master of Science in Mechanical Engineering

Learn more about the admissions requirements and how to apply.

Student Organizations

The following are a few of the professional societies and organizations located within the College of Engineering:

- American Society of Heating, Refrigeration, and Air Conditioning
- American Society of Civil Engineers
- American Society of Highway Engineers
- American Society of Mechanical Engineers
- Biomedical Engineering Society
- Construction Management Association of America
- Engineers Without Borders
- Eta Kappa Nu Honor Society - (IEEE-HKN)
- Institute of Electrical & Electronics Engineers
- National Society of Black Engineers
- Society of Asian Scientists and Engineers
- Society of Automotive Engineers (Temple Formula Racing)
- Society of Hispanic Professional Engineers
- The Society of Women Engineers
- TUARC - K3TU: The Temple University Amateur Radio Club
- Temple Robotics
- Theta Tau Colony

Academic Policies & Regulations

Please see the full listing of university-wide Academic Policies. The university policies and regulations generally apply to all undergraduate students and provide a framework within which schools and colleges may specify further conditions or variations appropriate to students in their courses or programs. Students are responsible for complying with all university-wide academic policies that apply to their individual academic status.

Co-requisites and Prerequisites

Students may be de-enrolled from courses for which they do not meet prerequisites and co-requisites. (Please see the Prerequisites and Co-requisites policy for more information.) Students are responsible for reviewing and abiding by all course prerequisites and co-requisites in the Course Catalog. The requirements are designed to assure that students are appropriately prepared to be successful in their courses. Prerequisites provide an efficient manner for students to register for the next course in a sequence for which they are prepared. Students who appropriately satisfy prerequisites are permitted to register for a first and second attempt. Completion of a prerequisite does not permit a student to enroll in the third attempt of a repeated course. Students may attempt a course for the third time only if they have received permission from the College, which is not guaranteed and may require additional coursework (See the Repeating a Course Policy below).

Dean's List

Each fall and spring semester, those undergraduates who have met the credit hour and academic criteria for their school or college are placed on the Dean's List. See the Dean's List policy for specific GPA and credit-hour requirements.

Fly in 4

Fly in 4 is a partnership between incoming freshmen and the University. It limits the number of hours per week that students have to work for pay and guarantees that students can graduate in four years, potentially saving them thousands of dollars in debt. For more information on this program, see Undergraduate Admissions.
Grading

Major, Minor, and GenEd courses must be completed with a letter grade of C- or higher unless otherwise specified. Certain courses may require a C or better in order to advance to the next course in a sequence or level.

Graduation Procedures

All College of Engineering students are required to complete a graduation review with an advisor in the Center for Academic Advising and Student Affairs prior to or at the start of their senior year. Students should schedule a review once they have completed 85 semester hours. The graduation review involves a detailing of the courses and credits completed and those that remain to be completed for graduation. Once the student and academic advisor complete the graduation plan (check sheet), the Center for Academic Advising and Student Affairs will forward the graduation check sheet to the student's department for the faculty advisor's approval. Final approval and clearance for graduation will be determined by the Director of Undergraduate Studies.

Students are expected to be active participants in the review and have equal responsibility for assuring the accuracy and completeness of the review.

Graduation Procedures

All College of Engineering students are required to complete a graduation review with an advisor in the Center for Academic Advising and Student Affairs prior to or at the start of their senior year. Students should schedule a review once they have completed 85 semester hours. The graduation review involves a detailing of the courses and credits completed and those that remain to be completed for graduation. Once the student and academic advisor complete the graduation plan (check sheet), the Center for Academic Advising and Student Affairs will forward the graduation check sheet to the student's department for the faculty advisor's approval. Final approval and clearance for graduation will be determined by the Director of Undergraduate Studies.

Students are expected to be active participants in the review and have equal responsibility for assuring the accuracy and completeness of the review.

Early in the semester in which students will complete their degree requirements, they must apply online via Self-Service Banner (SSB). For application deadlines, see the University's Undergraduate Graduation Procedures.

Permission to Take Courses at Another Institution

Students in the College of Engineering who wish to take courses at another institution must petition the Center for Academic Advising and Student Affairs for approval prior to enrolling in such a course. Petition forms are available in the Center for Academic Advising and Student Affairs, College of Engineering, Room 349. The student is responsible for obtaining a course description from the other institution and attaching it to the petition form. The student takes the petition to the corresponding Temple department for faculty review and then submits the petition to the Center for Academic Advising and Student Affairs for final approval.

Courses taken without prior approval will not be transferable toward the Temple degree. In addition, students must have completed the prerequisites and have completed or be completing any listed co-requisites of both the Temple equivalent course and course at the host institution.

Please see the University policy on Permission to Complete a Course at Another Institution after Matriculation for more information.

Plagiarism and Academic Dishonesty

Plagiarism and academic dishonesty are prohibited by the College of Engineering. The development of independent thought and a respect for the thoughts of others is essential to intellectual growth. The prohibition of plagiarism and cheating is intended to foster this independence and respect. See the policy on Plagiarism in this Bulletin.

The penalty for plagiarism or cheating as a first offense is normally an F in the course in which the offense is committed. In such cases, the instructor can either write a report or complete the Settlement of a Charge of Academic Dishonesty form and send it to the Center for Academic Advising and Student Affairs. The Center for Academic Advising and Student Affairs will forward to the Office of Student Conduct and Community Standards. The Office of Student Conduct and Community Standards generally adjudicates all cases and student appeals.

Repeating a Course

Students may attempt a course two times without restriction. Students in the College of Engineering are encouraged to meet with an advisor prior to attempting a course for the second time. A third attempt of any course is not guaranteed and requires permission of the student's home college. Petitions for a third attempt may require additional coursework, remediation, and/or academic/personal planning. Please refer to the University policy on Repeating a Course for further information.

College Graduation Requirements

Anticipation of Graduation

All College of Engineering (COE) students who intend to graduate in May, August, or January must have a graduation review at the completion of 85 credits. At the beginning of the final semester, the student must complete a graduation application. To earn the baccalaureate degree in any curriculum of the COE, a student must submit a graduation plan (check sheet), consisting of all required courses in the chosen curriculum, which has been approved by the student's academic advisor, chairperson, and Director of Undergraduate Studies. Required courses are indicated in curriculum checklists available from the student's respective department of instruction.

College Requirements for all Majors

Engineering Program

- 30 minimum credits in Math and Science
- 25 minimum credits in University General Education
• 50-65 credits in major (varies with major), minimum 2.0 GPA in the major
• 128 minimum credits total

Engineering Technology (CMT & ET) programs
• 24 minimum credits in Math and Science
• 25 minimum credits in University General Education
• 50-60 credits in major (varies with major), minimum 2.0 GPA in the major
• 124 minimum credits total

Notes:
1. The total number of credit hours at graduation may be greater for some students based on initial placement exams, transfer evaluations, individual curricular choices, and academic progress.
2. Students must fulfill the necessary prerequisites for any given course or course sequence. See the Prerequisite and Co-requisite Policy in the university-wide Academic Policies section in this Bulletin.
3. The engineering programs are structured to prepare students for the professional practice of engineering and/or graduate study. The curricula emphasize a rigorous treatment of the mathematical and scientific approaches to the solution of engineering problems.
4. The final two years of study stress the synthesis of unique solutions rooted in the fundamental principles mastered during the first two years. These final years culminate in a design project.

Program Performance
A minimum cumulative GPA of 2.0 is required for graduation. Students majoring in engineering must attain a minimum GPA of 2.0 in their major courses in order to graduate. Students majoring in engineering technology and construction management technology must have a minimum GPA of 2.0 in their major courses.

Independent Research
Independent student work on a laboratory investigation or design project must be approved by the chairperson of the respective department and the assigned faculty supervisor. Work is graded on research methodology, research results, and a report. Only seniors or juniors with a minimum GPA of 3.0 may apply for independent research. Approved projects must be completed in one academic year.

Independent Study
A student is permitted to take no more than two independent study courses. Permission is granted only if a student needs the course to complete his/her studies. They can be taken only in the junior and senior years. The content of the independent study work must cover the material in one of the courses listed in the curriculum. Students must complete an independent study form in their department prior to registration for the independent study.

Transfer Credit
Transfer credit to the COE can be granted only from an accredited institution of higher learning. Co-op education and credit for life experience are not transferable from other institutions. Advanced placement credits must follow Temple's advanced placement credit policy and equivalencies. Transfer credits are not granted after a student has matriculated into a degree program. Students may take courses at other institutions and have transfer credits awarded provided they are meeting Temple's Permission to Complete Courses at Another Institution After Matriculation guidelines. The dean must approve permission for such arrangements in advance. Senior Design Projects or Capstone courses are not transferable to the college.

Courses Inapplicable to Graduation
Semester hours earned in MATH 0701 or MATH 0702, lower-level military science (ROTC), and RCC-enhanced courses are not credited toward the minimum semester hours required for graduation.

Students will not be awarded duplicate credit for courses that are repeated in transfer or at Temple.

Non-Traditional Credits
A maximum of 12 semester hours of credit will be allowed by the COE in cooperative education, relevant work experience, approved ROTC courses, and Advanced Placement or CLEP examinations. No other non-traditional credit will be granted.

Credit for Life Experience
Degree seeking students may be granted academic credits for work experience if it is judged to be an adequate substitute for all or part of particular courses required of the student. Experience must be related to a specific course in the curriculum offered by the college. Work experience must be acquired before entering Temple University. Credit will only be granted after completion of 30 semester hours of coursework. Application forms are available in the Center for Academic Advising and Student Affairs (Engineering Building, Room 349).
Academic Advising

Shawn Fagan
Assistant Dean, Undergraduate Studies
Center for Academic Advising and Student Affairs
Engineering Building, Room 347a
sfagan@temple.edu

Advising for the Major in the College of Engineering

Civil and Environmental Engineering Department
Engineering Building, Room 513
215-204-7814
ceed@temple.edu

Electrical and Computer Engineering Department
Engineering Building, Room 711
215-204-7597
eegrad@temple.edu

Mechanical Engineering Department
Engineering Building, Room 610
215-204-7808
vross@temple.edu

Bioengineering Department
Engineering Building, Room 813
215-204-3038
ruth.ochia@temple.edu

All students in the College of Engineering (COE) have the flexibility to meet with any of the academic advisors in the Center for Academic Advising and Student Affairs once they have officially matriculated in the College of Engineering. The student’s academic advisor will confirm that the courses selected yield credits toward a degree and that the requirements of Temple University, COE, and the academic department are being met. Reference should be made to this Bulletin and to DARS in planning programs.

Academic advisors attempt to avoid errors when advising students about their program requirements, but schools and colleges cannot assume liability for errors in advising. Therefore, students must assume primary responsibility for knowing the requirements for their degrees and for acquiring current information about their academic status.

Faculty

Bechara E. Abboud, Associate Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Drexel University.

Fauzia Ahmad, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Pennsylvania.

Berk Ayranci, Instructor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; M.S.M.E., Temple University.

Li Bai, Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Drexel University.

George Baran, Professor Emeritus, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Michigan.

Evangelia Bellas, Assistant Professor, Department of Bioengineering, College of Engineering; Ph.D., Tufts University.

Saroj K. Biswas, Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Ottawa.

Noemi Bonessio, Associate Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Sapienza University of Rome.

Robert M. Brooks, Associate Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Indian Institute of Technology.

David S. Brookstein, Professor, Department of Mechanical Engineering, College of Engineering; Sc.D., Massachusetts Institute of Technology.

Shih-Jiun Chen, Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Drexel University.

Harsh Deep Chopra, Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Maryland College Park.
Joseph Thomas Coe Jr., Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., University of California Los Angeles.

Richard S. Cohen, Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Princeton University.

Philip Dames, Assistant Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Pennsylvania.

Joseph Danowsky, Instructor (Teaching/Instructional), Department of Electrical and Computer Engineering, College of Engineering; B.A., University of Pittsburgh.

Kurosh Darvish, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Virginia.

Zdenka J. Delalic, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Pennsylvania.

Dmitriy A. Dikin, Associate Professor (Research), Department of Mechanical Engineering, College of Engineering; Ph.D., National Academy of Sciences of Ukraine, Institute for Low Temperature Physics and Engineering.

Oleksandr Dilyan, Assistant Professor (Teaching/Instructional), Department of Mechanical Engineering, College of Engineering; Ph.D., Donetsk National Technical University.

Liang Du, Assistant Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Georgia Institute of Technology.

Thomas V. Edwards, Associate Professor (Teaching/Instructional), Department of Engineering, Technology, and Management, College of Engineering; D.P.S., Pace University.

Ahmed Faheem, Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., University of Wisconsin.

James A. Furmato, Assistant Professor (Teaching/Instructional), Department of Bioengineering, College of Engineering; Ph.D., Drexel University.

Jonathan Arye Gerstenhaber, Assistant Professor (Teaching/Instructional), Department of Bioengineering, College of Engineering; Ph.D., Temple University.

Bojana Gilgorijevic, Assistant Professor, Department of Bioengineering, College of Engineering; Ph.D., Georgetown University.

Yah-el Har-el, Assistant Professor (Teaching/Instructional), Department of Bioengineering, College of Engineering; Ph.D., Johns Hopkins University.

John J. Helferty, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Drexel University.

Hamid Herati, Assistant Professor (Teaching/Instructional), Department of Mechanical Engineering, College of Engineering; Ph.D., University of Cardiff.

Parsaoran Hutapea, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., North Carolina State University.

Daniel A. Jacobs, Assistant Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Stanford University.

Mehdi Khazadeh Moradlo, Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Oklahoma State University.

Mohammad F. Kiani, Assistant Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Louisiana Tech University.

Albert Kim, Assistant Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Purdue University.

Sanghun Kim, Assistant Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Syracuse University.

Paul A. Laviola, Instructor (Teaching/Instructional), Department of Engineering, Technology, and Management, College of Engineering; M.S., Widener University.

Peter Lelkes, Professor, Department of Bioengineering, College of Engineering; Ph.D., RWTH Aachen University.

Michel Lemay, Professor, Department of Bioengineering, College of Engineering; Ph.D., Case Western Reserve University.

Haijun Liu, Assistant Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Maryland College Park.

Ling Liu, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Columbia University.

Xiaoran Lu, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Maryland College Park.
Erica R. McKenzie, Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., University of California Davis.

William C. Miller, Associate Professor Emeritus, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., University of Pennsylvania.

Iyad Obeid, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Duke University.

Ruth Ochia, Associate Professor (Teaching/Instructional), Department of Bioengineering, College of Engineering; Ph.D., University of Washington.

Chetan A. Patil, Assistant Professor (Research), Department of Bioengineering, College of Engineering; Ph.D., Vanderbilt University.

Vallorie J. Perdier, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Lehigh University.

Joseph Picone, Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., Illinois Institute of Technology.

Shriram Pillapakkam, Associate Professor (Teaching/Instructional), Department of Mechanical Engineering, College of Engineering; Ph.D., New Jersey Institute of Technology.

Nancy Pleshko, Professor, Department of Bioengineering, College of Engineering; Ph.D., Rutgers University.

David Reiser, Assistant Professor (Teaching/Instructional), Department of Mechanical Engineering, College of Engineering; Ph.D., University of Illinois at Urbana-Champaign.

Fei Ren, Assistant Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Michigan State University.

Avner Ronen, Assistant Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Technion - Israel Institute of Technology.

Robert J. Ryan, Associate Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Drexel University.

Keyanoush Sadeghipour, Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., University of Manchester Institute of Science and Technology.

Elham Sahraei, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., George Washington University.

Dennis A. Silage, Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Pennsylvania.

Laura D. Solomon, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., Lehigh University.

Damoon Soudbakhsh, Associate Professor, Department of Mechanical Engineering, College of Engineering; Ph.D., George Washington University.

Andrew Spence, Associate Professor, Department of Bioengineering, College of Engineering; Ph.D., Cornell University.

Won Hyuk Suh, Assistant Professor, Department of Bioengineering, College of Engineering; Ph.D., University of Illinois at Urbana-Champaign.

Thomas E. Sullivan, Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., The Pennsylvania State University.

Rominder Suri, Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Michigan Technological University.

Yuan Tang, Assistant Professor (Research), Department of Mechanical Engineering, College of Engineering; Ph.D., Florida International University.

Rouzbeh Tehrani, Assistant Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Temple University.

Brian F. Thomson, Assistant Professor (Teaching/Instructional), Department of Electrical and Computer Engineering, College of Engineering; Ph.D., The Pennsylvania State University.

Erkan Tüzel, Associate Professor, Department of Bioengineering, College of Engineering; Ph.D., University of Minnesota.

Philip D. Udo-Inyang, Associate Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., University of Missouri-Columbia.

Felix F. Udoeyo, Assistant Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Abubakar Tafawa Balewa University.

Evelyn Walters, Assistant Professor (Teaching/Instructional), Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Technische Universität München.
Karin Wang, Associate Professor, Department of Bioengineering, College of Engineering; Ph.D., Cornell University.

Chang-Hee Won, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Notre Dame.

Shianling Wu, Instructor (Teaching/Instructional), Department of Electrical and Computer Engineering, College of Engineering; M.S.C.S., Columbia University.

Heyang Yuan, Assistant Professor, Department of Civil and Environmental Engineering, College of Engineering; Ph.D., Virginia Polytechnic Institute and State University.

Yimin Daniel Zhang, Associate Professor, Department of Electrical and Computer Engineering, College of Engineering; Ph.D., University of Tsukuba.