High-Performance Computing for Scientific Applications, P.S.M.

COLLEGE OF SCIENCE AND TECHNOLOGY

Learn more about the Professional Science Master's in High-Performance Computing for Scientific Applications.

About the Program

Computation, in tandem with theory and experiment, is highly regarded in the advance of scientific knowledge and engineering practice. In recognition of a growing need for experts cross-trained in relevant computational sciences, applied mathematics, statistics, and traditional scientific fields such as chemistry and physics, the Professional Science Master's (P.S.M.) program in High-Performance Computing for Scientific Applications is targeted toward STEM graduates seeking to use high-performance computation as their primary research instrument in the physical sciences, life sciences, and engineering. The core curriculum introduces students to the architecture of high-performance computing systems, mathematical techniques employed in high-performance computing, the software tools used in parallel calculations, and computational methods used in the sciences and engineering. A distinguishing feature of the program is its paired emphasis on the algorithms and technology of high-performance computing in applications to problems in science and engineering. Cross-disciplinary techniques are emphasized, and learning through applications and individually designed projects are prioritized over theory.

Time Limit for Degree Completion: 2 years

Campus Location: Main

Full-Time/Part-Time Status: The degree program can be completed on a full- or part-time basis. Most of the classes are offered in the evenings or on weekends to enable full-time working professionals to enroll in the program. International students are required to register as full-time students.

Interdisciplinary Study: The program is interdisciplinary by nature.

Accreditation: Temple University is fully accredited by the Middle States Commission on Higher Education.

Job Prospects: Students in the program are connected to internships in industry and government laboratories by the P.S.M. Scientific Advisory Committee. Graduates are then well prepared to compete for high-quality positions in industry, government laboratories, and academia.

Non-Matriculated Student Policy: Non-matriculated students may enroll in a total of three courses (9 credits) with permission of the instructor and the Department of Mathematics.

Financing Opportunities: Financial assistance in the form of Research or Teaching Assistantships is not offered.

Admission Requirements and Deadlines

Application Deadline:

Fall: March 1; December 15 international
Spring: Open only to non-matriculated students who successfully completed P.S.M. coursework in the Fall term

Later applications may be considered for admission.

APPLY ONLINE to this graduate program.

Letters of Reference:

Number Required: 2

From Whom: Letters should be obtained from college/university faculty or faculty who are familiar with the applicant's competency. If the applicant has an established career in the field, the applicant's immediate supervisor should provide one of the letters.

Coursework Required for Admission Consideration: Applicants should have a strong background in one or more STEM fields: Science, Technology, Engineering, and Mathematics.

Bachelor’s Degree in Discipline/Related Discipline: The P.S.M. program has been designed for recent graduates and professionals who have a bachelor's degree or equivalent in a STEM field.

Statement of Goals: Approximately 250 to 500 words include your interest in Temple's program, your research goals, and your academic and research achievements.

Standardized Test Scores:
Applicants who earned their baccalaureate degree from an institution where the language of instruction was other than English, with the exception of those who subsequently earned a master’s degree at a U.S. institution, must report scores for a standardized test of English that meet these minimums:

- TOEFL iBT: 85
- IELTS Academic: 6.5
- PTE Academic: 58

Interview: An in-person or SKYPE interview with the Program Director or members of the P.S.M. Steering Committee is required.

Transfer Credit: Graduate credits from an accredited institution may be transferred into the P.S.M. program. The credits must be equivalent to coursework offered by the Department of Mathematics at Temple University. A grade of ‘B’ or better must have been earned for the credits to transfer. The P.S.M. Steering Committee makes recommendations to the Department Chair for transferring credit on an individual basis. The maximum number of credits a student may transfer is 6.

Program Requirements

General Program Requirements:

- Number of Credits Required Beyond the Baccalaureate: 30

Required Courses:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 5061</td>
<td>Fundamentals of Computer Programming for Scientists and Engineers</td>
<td>4</td>
</tr>
<tr>
<td>MATH 5063</td>
<td>Introduction to High-Performance Computing Technology for Scientists</td>
<td>4</td>
</tr>
<tr>
<td>Two High-Performance Computing Courses</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Ethics Course</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Professional Development Course</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Electives</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Select three courses from the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 5411</td>
<td>Structural Bioinformatics I</td>
<td></td>
</tr>
<tr>
<td>CHEM 5301</td>
<td>Quantum Chemistry</td>
<td></td>
</tr>
<tr>
<td>CHEM 5302</td>
<td>Statistical Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>CIS 5524</td>
<td>Analysis and Modeling of Social and Information Networks</td>
<td></td>
</tr>
<tr>
<td>CIS 5525</td>
<td>Neural Computation</td>
<td></td>
</tr>
<tr>
<td>CIS 5526</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>CIS 9669</td>
<td>Distributed and Parallel Computer Systems</td>
<td></td>
</tr>
<tr>
<td>MATH 8013</td>
<td>Numerical Linear Algebra I</td>
<td></td>
</tr>
<tr>
<td>MATH 8014</td>
<td>Numerical Linear Algebra II</td>
<td></td>
</tr>
<tr>
<td>MATH 8023</td>
<td>Numerical Differential Equations I</td>
<td></td>
</tr>
<tr>
<td>MATH 8024</td>
<td>Numerical Differential Equations II</td>
<td></td>
</tr>
<tr>
<td>MATH 8107</td>
<td>Mathematical Modeling for Science, Engineering, and Industry</td>
<td></td>
</tr>
<tr>
<td>MATH 8700</td>
<td>Topics Computer Program</td>
<td></td>
</tr>
<tr>
<td>MATH 8710</td>
<td>Topics Computer Program</td>
<td></td>
</tr>
<tr>
<td>MATH 9200</td>
<td>Topics in Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>MATH 9210</td>
<td>Topics in Numerical Analysis</td>
<td></td>
</tr>
<tr>
<td>PHYS 5001</td>
<td>Introduction to Quantum Computing</td>
<td></td>
</tr>
<tr>
<td>PHYS 8102</td>
<td>Statistical Mechanics</td>
<td></td>
</tr>
</tbody>
</table>

Capstone Course

- Total Credit Hours: 30

Culminating Events:

- **Capstone Research Project:**
 The Capstone Research Project provides students with the opportunity to develop, apply, and demonstrate their skills in a professional high-performance computing environment. The project must be approved in advance by the P.S.M. Steering Committee and requires a supervisor from
either the Temple faculty or the P.S.M. Scientific Advisory Committee. Students can undertake their research projects in whole or in part during student internships.

Contacts

Program Web Address:
https://www.temple.edu/academics/degree-programs/high-performance-computing-for-scientific-applications-psm-st-hpc-psm

Department Information:
Dept. of Mathematics
638 Wachman Hall
1805 N. Broad Street
Philadelphia, PA 19122-6094
grad.math@temple.edu
215-204-7842

Submission Address for Application Materials:
https://apply.temple.edu/CST/

Department Contacts:

Graduate Chairperson:
David Futer, Ph.D.
grad.math@temple.edu
215-204-7854

Chairperson:
Irina Mitrea, Ph.D.
mathematics@temple.edu
215-204-4650

Courses

MATH 5000. Special Topics in Math. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 5001. Linear Algebra. 3 Credit Hours.
Vector spaces and subspaces over the real and complex numbers; linear independence and bases; linear mappings; dual and quotient spaces; fields and general vector spaces; polynomials, ideals and factorization of polynomials; determinant, Jordan canonical form. Fundamentals of multilinear algebra.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 5041. Concepts of Analysis I. 3 Credit Hours.
Advanced calculus in one and several real variables. Topics include topology of metric spaces, continuity, sequences and series of numbers and functions, convergence, including uniform convergence. Ascoli and Stone-Weierstrass theorems. Integration and Fourier series. Inverse and implicit function theorems, differential forms, Stokes theorem.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.
MATH 5042. Concepts of Analysis II. 3 Credit Hours.
Advanced calculus in one and several real variables. Topics include topology of metric spaces, continuity, sequences and series of numbers and functions, convergence, including uniform convergence. Ascoli and Stone-Weierstrass theorems. Integration and Fourier series. Inverse and implicit function theorems, differential forms, Stokes theorem.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 5041|Minimum Grade of B-|May not be taken concurrently.

MATH 5043. Introduction to Numerical Analysis. 3 Credit Hours.
Roots of nonlinear equations, errors, their source and propagation, linear systems, approximation and interpolation of functions, numerical integration.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 5044. Introduction to Numerical Analysis II. 3 Credit Hours.
This course will cover the following topics: Analysis and numerical solutions of ordinary differential equations, Runge-Kutta, multistep, and Taylor series methods; deferred correction; convergence and stability; stiff problems.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 5045. Ordinary Differential Equations. 3 Credit Hours.
Existence and uniqueness theorems, continuous and smooth dependence on parameters, linear differential equations, asymptotic behavior of solutions, isolated singularities, nonlinear equations, Sturm-Liouville problems, numerical solution of ODEs.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 5061. Fundamentals of Computer Programming for Scientists and Engineers. 4 Credit Hours.
Scientists and engineers use computers for a multitude of purposes. Even with ready-to-use applications, some amount of computer programming is commonly required to adapt to changing technology while attaining the rigorous standards of each specific discipline. This course focuses on fundamental computer programming constructs, introducing the languages Python, C++ and Fortran. Through lectures and intensive exercises students will learn to implement fundamental mathematical constructs and solve basic programming problems relevant to scientific applications. The course briefly reviews also the Linux environment, its software development tools and language interoperability. For each programming language, the course focuses on constructs and syntax designed for performance and numerical accuracy, in connection with methods from applied science, mathematics and engineering. The students taking the course are expected to have sufficient mathematical maturity, as evidenced, for example, by having completed an undergraduate Calculus sequence. The majority of the grade is determined by a mid-term and a final exam, both including a combination of questionnaires and supervised programming assignments.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 5063. Introduction to High-Performance Computing Technology for Scientists. 4 Credit Hours.
This course is an introduction to the technology used in Linux clusters and supercomputers dedicated to calculations in applied science and engineering. The basic architecture of modern computers (processing units, memory, storage, operating system) is briefly reviewed, emphasizing the role and performance impact of each element in numerical computation. The core of the course focuses on setup and management of computer hardware specialized for scientific computing, and on its impact on commonly used strategies and methods for scientific computation. The material is organized in a combination of lectures and hands-on exercises, using computer hardware hosted at local facilities as well as virtualized resources. The majority of the grade is determined by a mid-term and a final exam, both including a combination of questionnaires and identification of the most efficient solution to common numerical problems.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 5061|Minimum Grade of B-|May be taken concurrently.
MATH 8001. Candidates Seminar. 1 to 3 Credit Hour.
Challenging problems from many different areas of mathematics are posed and discussed.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8002. Candidates Seminar. 1 to 3 Credit Hour.
Challenging problems from many different areas of mathematics are posed and discussed.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8003. Number Theory. 3 Credit Hours.
This is an introduction to the ideas and techniques of number theory, elementary, analytic, and algebraic. The object of the course is to demonstrate how real and complex analysis and modern algebra can be applied to classical problems in number theory. References: H. Rademacher, 'Lectures on elementary number theory'; H. Davenport, 'Multiplicative number theory'; Rosen and Ireland, 'A classical introduction to algebraic number theory.'

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8004. Number Theory. 3 Credit Hours.
This is an introduction to the ideas and techniques of number theory, elementary, analytic, and algebraic. The object of the course is to demonstrate how real and complex analysis and modern algebra can be applied to classical problems in number theory. References: H. Rademacher, 'Lectures on elementary number theory'; H. Davenport, 'Multiplicative number theory'; Rosen and Ireland, 'A classical introduction to algebraic number theory.'

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8007. Introduction to Methods in Applied Mathematics I. 3 Credit Hours.
This is the first semester of a two-semester general overview of mathematical concepts and tools for applied mathematics. Topics to be covered include modeling and derivation of equations of continuum mechanics; solution methods for linear PDE in special domains, such as Fourier and Laplace transforms as well as Green's functions; calculus of variations and control theory.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8008. Introduction to Methods in Applied Mathematics II. 3 Credit Hours.
This is the second semester of a two-semester general overview of mathematical concepts and tools for applied mathematics. Topics to be covered include dynamical systems and bifurcation theory; asymptotic analysis and perturbation theory; systems of hyperbolic conservation laws. Material is largely independent of MATH 8007.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8011. Abstract Algebra I. 3 Credit Hours.
Groups, rings, modules, fields; Galois theory; linear algebra.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8012. Abstract Algebra II. 3 Credit Hours.
Groups, rings, modules, fields; Galois theory; linear algebra.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8011|Minimum Grade of B-|May not be taken concurrently.
MATH 8013. Numerical Linear Algebra I. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8014. Numerical Linear Algebra II. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8013|Minimum Grade of B-|May not be taken concurrently.

MATH 8023. Numerical Differential Equations I. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8024. Numerical Differential Equations II. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8023|Minimum Grade of B-|May not be taken concurrently.

MATH 8031. Probability Theory. 3 Credit Hours.
With a rigorous approach the course covers the axioms, random variables, expectation and variance. Limit theorems are developed through characteristic functions.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 8032. Stochastic Processes. 3 Credit Hours.
Random sequences and functions; linear theory; limit theorems; Markov processes; branching processes; queuing processes.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8031|Minimum Grade of B-|May not be taken concurrently.

MATH 8041. Real Analysis I. 3 Credit Hours.
The syllabus coincides with the syllabus for the Ph.D. Examination in Real Analysis.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.
MATH 8042. Real Analysis II. 3 Credit Hours.
The syllabus coincides with the syllabus for the Ph.D. Examination in Real Analysis.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8041|Minimum Grade of B-|May not be taken concurrently.

MATH 8051. Functions of a Complex Variable I. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8051|Minimum Grade of B-|May not be taken concurrently.

MATH 8052. Functions of a Complex Variable II. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8051|Minimum Grade of B-|May not be taken concurrently.

MATH 8061. Differential Geometry and Topology I. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8061|Minimum Grade of B-|May not be taken concurrently.

MATH 8062. Differential Geometry and Topology II. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 8061|Minimum Grade of B-|May not be taken concurrently.

MATH 8107. Mathematical Modeling for Science, Engineering, and Industry. 3 Credit Hours.
In this course, students work in groups on projects that arise in industry, engineering, or in other disciplines of science. In addition to being advised by the course instructors, in all projects an external partner is present. The problems are formulated in non-mathematical language, and the final results need to be formulated in a language accessible to the external partner. This means in particular that the mathematical and computational methods must be selected or created by the students themselves. Students disseminate their progress and achievements in weekly presentations, a mid-term and a final project report, and a final presentation. Group work with and without the instructors’ involvement is a crucial component in this course.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8007|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8008|Minimum Grade of B-|May not be taken concurrently)

MATH 8141. Partial Differential Equations I. 3 Credit Hours.
The classical theory of partial differential equations. Elliptic, parabolic, and hyperbolic operations.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.
MATH 8142. Partial Differential Equations II. 3 Credit Hours.
The classical theory of partial differential equations. Elliptic, parabolic, and hyperbolic operations.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites: MATH 8141|Minimum Grade of B-|May not be taken concurrently.

MATH 8161. Topology. 3 Credit Hours.
Point set topology through the Urysohn Metrization Theorem; fundamental group and covering spaces. Differential forms; the DeRham groups.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites: MATH 5041|Minimum Grade of B-|May not be taken concurrently.

MATH 8200. Topics in Applied Mathematics. 3 Credit Hours.
Variable topics, such as control theory and transform theory, will be treated.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8210. Topics in Applied Mathematics II. 3 Credit Hours.
Variable topics, such as control theory and transform theory, will be treated.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8700. Topics Computer Program. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8710. Topics Computer Program. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 8985. Teaching in Higher Education. 1 to 3 Credit Hour.
This course is required for any student seeking Temple's Teaching in Higher Education Certificate. The course focuses on the research on learning theory and the best teaching practices, with the aim of preparing students for effective higher education teaching. All educational topics will be considered through the lens of teaching mathematics and quantitative thinking.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for a total of 3 credit.

MATH 9000. Topics in Number Theory I. 3 Credit Hours.
Analytic and algebraic number theory. Classical results and methods and special topics such as partition theory, asymptotic, Zeta functions, transcendence, modular functions.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.
MATH 9003. Modular Functions. 3 Credit Hours.
This course focuses upon the modular group and its subgroups, the corresponding fundamental region and their invariant functions. Included will be a
discussion of the basic properties of modular forms and their construction by means of Eisenstein and Poincar© series and theta series. Other topics:
the Hecke correspondence between modular forms and Dirichlet series with functional equations, the Petersen inner product, the Hecke's operators.
Emphasis will be placed upon applications to number theory. References: M. Knopp, 'Modular functions in analytic number theory'; J. Lehner, 'A short
course in automorphic forms'; B. Schoeneberg, 'Elliptic modular forms.'

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may not be repeated for additional credits.

MATH 9004. Modular Functions. 3 Credit Hours.
This course focuses upon the modular group and its subgroups, the corresponding fundamental region and their invariant functions. Included will be a
discussion of the basic properties of modular forms and their construction by means of Eisenstein and Poincar© series and theta series. Other topics:
the Hecke correspondence between modular forms and Dirichlet series with functional equations, the Petersen inner product, the Hecke's operators.
Emphasis will be placed upon applications to number theory. References: M. Knopp, 'Modular functions in analytic number theory'; J. Lehner, 'A short
course in automorphic forms'; B. Schoeneberg, 'Elliptic modular forms.'

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may not be repeated for additional credits.

MATH 9005. Combinatorial Mathematics. 3 Credit Hours.
Topics include: Enumeration, Trees, Graphs, Codes, Matchings, Designs, Chromatic Polynomials, Coloring, Networks.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may not be repeated for additional credits.

MATH 9010. Topics in Number Theory II. 3 Credit Hours.
Analytic and algebraic number theory. Classical results and methods and special topics such as partition theory, asymptotic, Zeta functions,
transcendence, modular functions.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may be repeated for additional credit.

MATH 9011. Homological Algebra. 3 Credit Hours.
Students will learn fundamental notions of homological algebra such as chain complexes, Abelian categories, derived functors, and spectral sequences.
A portion of this course is also devoted to rudiments of category theory. Students will learn how to apply constructions of homological algebra and
category theory to questions from abstract algebra, topology and deformation theory.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8011|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8012|Minimum Grade of B-|May not be taken concurrently)

MATH 9012. Representation Theory I. 3 Credit Hours.
This is the first semester of a two-semester course on the principal methods and results of algebraic representation theory. The course will start with an
introduction to the fundamental notions, tools and general results of representation theory in the setting of associative algebras. This will be followed by
a thorough coverage of the classical representation theory of finite groups over an algebraically closed field of characteristic zero. If time permits, then
the semester will conclude with a brief introductory discussion of the representation theory of the general linear group.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.
Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8011|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8012|Minimum Grade of B-|May not be taken concurrently)
MATH 9013. Representation Theory II. 3 Credit Hours.
This is the second part of a two-semester course sequence on the principal methods and results of algebraic representation theory. The main focus will be on representations of finite-dimensional Lie algebras, with particular emphasis on the case of semisimple Lie algebras. Time permitting, the course will conclude with an introduction to the representation theory of Hopf algebras.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 9012|Minimum Grade of B-|May not be taken concurrently.

MATH 9014. Commutative Algebra and Algebraic Geometry I. 3 Credit Hours.
This is the first semester of a two-semester course on the fundamental concepts of commutative algebra and classical as well as modern algebraic geometry. Topics for the first semester include: ideals of commutative rings, modules, Noetherian and Artinian rings, Noether normalization, Hilbert's Nullstellensatz, rings of fractions, primary decomposition, discrete valuation rings and the rudiments of dimension theory.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8011|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8012|Minimum Grade of B-|May not be taken concurrently)

MATH 9015. Commutative Algebra and Algebraic Geometry II. 3 Credit Hours.
This is the second semester of a two-semester course on the fundamental concepts of commutative algebra and classical as well as modern algebraic geometry. Topics for the second semester include: affine and projective varieties, morphisms of algebraic varieties, birational equivalence, and basic intersection theory. In the second semester, students will also learn about schemes, morphisms of schemes, coherent sheaves, and divisors.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 9014|Minimum Grade of B-|May not be taken concurrently.

MATH 9021. Riemannian Geometry. 3 Credit Hours.
The main goal of this one-semester course is to provide a solid introduction to the two central concepts of Riemannian Geometry, namely, geodesics and curvature and their relationship. After taking this course, students will have an intimate acquaintance with the tools and concepts that are needed for pursuing research in Riemannian Geometry or applying its ideas to other fields of mathematics such as analysis, topology, and algebraic geometry. The topics covered include Riemannian metrics, Riemannian connections, geodesics, curvature (sectional, Ricci, and scalar curvatures), the Jacobi equation, the second fundamental form, and global results such as the Gauss-Bonnet Theorem, the theorems of Hopf-Rinow and Hadamard, variations of energy, the theorems of Bonnet-Myers and of Synge-Weinstein, and the Rauch comparison theorem.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8061|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8062|Minimum Grade of B-|May be taken concurrently)

MATH 9023. Knot Theory and Low-Dimensional Topology I. 3 Credit Hours.
This is the first semester of a year-long course surveying the modern theory of knots and providing an introduction to some fundamental results and techniques of low-dimensional topology. The course will start at the very beginning of knot theory; it will then proceed to several classical knot invariants (Alexander, Jones, HOMFLY polynomials). The first semester will also touch on braid groups and mapping class groups, and use these groups to show that every (closed, orientable) 3-manifold can be constructed via knots.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8061|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8062|Minimum Grade of B-|May not be taken concurrently)
MATH 9024. Knot Theory and Low-Dimensional Topology II. 3 Credit Hours.
This is the second semester of a year-long course surveying the modern theory of knots and providing an introduction to some fundamental results and techniques of low-dimensional topology. This course will continue the development of knot invariants begun during the first semester, in particular exploring the connection between knots and braid groups. It will also use Dehn surgery techniques to extend construct quantum invariants of closed 3-dimensional manifolds. Finally, the course will survey several results in 4-dimensional topology and their connection to knot theory.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 9023|Minimum Grade of B-|May not be taken concurrently.

MATH 9031. Advanced Probability Theory. 3 Credit Hours.
This course is a continuation of MATH 8031 and is based on measure theory. It covers advanced topics in probability theory: martingales, Brownian motion, Markov chains, continuous time Markov processes, ergodic theory and their applications.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9041. Functional Analysis I. 3 Credit Hours.
Topics covered include Banach and Hilbert spaces, Banach-Steinhaus theorem, Hahn-Banach theorem, Stone-Weierstrass theorem, Operator theory, self-adjointness, compactness. Also covered are Sobolev spaces, embedding theorems, Schwartz distributions, Paley-Wiener theory. If time permits, Banach and C algebras will be covered.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8041|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8042|Minimum Grade of B-|May not be taken concurrently)

MATH 9042. Functional Analysis II. 3 Credit Hours.
Topics covered include: Banach and Hilbert spaces, Banach-Steinhaus theorem, Hahn-Banach theorem, Stone-Weierstrass theorem, Operator theory, self-adjointness, compactness. Also covered are Sobolev spaces, embedding theorems, Schwartz distributions, Paley-Wiener theory. If time permits, Banach and C algebras will be covered.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 9041|Minimum Grade of B-|May not be taken concurrently.

MATH 9043. Calculus of Variations. 3 Credit Hours.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9044. Harmonic Analysis. 3 Credit Hours.
A year long course to explore the real-variable techniques developed in Harmonic Analysis to study smoothness properties of functions and the behavior of certain spaces under the action of some operators. These techniques are also essential in many applications to PDE's and several complex variables. Offered every two years.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.
MATH 9051. Several Complex Variables I. 3 Credit Hours.
Holomorphic functions of several complex variables, domains of holomorphy, pseudoconvexity, analytic varieties, CR manifolds.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8051|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8052|Minimum Grade of B-|May not be taken concurrently)

MATH 9052. Several Complex Variables II. 3 Credit Hours.
Holomorphic functions of several complex variables, domains of holomorphy, pseudoconvexity, analytic varieties, CR manifolds.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 9051|Minimum Grade of B-|May not be taken concurrently.

MATH 9053. Harmonic Analysis. 3 Credit Hours.
A year long course to explore the real-variable techniques developed in Harmonic Analysis to study smoothness properties of functions and the behavior of certain spaces under the action of some operators. These techniques are also essential in many applications to PDE's and several complex variables. Offered every two years.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9061. Lie Groups. 3 Credit Hours.
This course develops Lie theory from the ground up. Starting with basic definitions of Lie group-manifolds and Lie algebras, the course develops structure theory, analytic and algebraic aspects, and representation theory. Interactions with other fields, e.g., differential equations and geometry are also discussed.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9062. Lie Groups. 3 Credit Hours.
This course develops Lie theory from the ground up. Starting with basic definitions of Lie group-manifolds and Lie algebras, the course develops structure theory, analytic and algebraic aspects, and representation theory. Interactions with other fields, e.g., differential equations and geometry are also discussed.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9063. Riemann Surfaces. 3 Credit Hours.
Introduction to differential geometry, Riemannian manifolds and Hodge theory; classification of complex structures of oriented two-manifolds as conformal classes of Riemannian metrics; covering spaces and the uniformization theorem; the moduli space of the torus; the Riemann-Roch theorem for compact Riemann surfaces; interpretation of the Riemann-Roch theorem as the index of an elliptic operator.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9064. Riemann Surfaces. 3 Credit Hours.
Moduli and Teichmuller spaces for compact Riemann surfaces; introduction to modular forms; embedding of compact Riemann surfaces in complex projective spaces. Branched coverings and maps onto the Riemann sphere.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.
MATH 9071. Differential Topology. 3 Credit Hours.
Moduli and Teichmueller spaces for compact Riemann surfaces; introduction to modular forms; embedding of compact Riemann surfaces in complex projective spaces. Branched coverings and maps onto the Riemann sphere.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9072. Differential Topology. 3 Credit Hours.
Topics and emphasis may vary depending on instructor and may include surgery, handlebodies, cobordism; topological manifolds with smooth structure, manifolds with more than one smooth structures; topology of vector bundles, characteristic classes, index theorem.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

MATH 9073. Geometric Group Theory. 3 Credit Hours.
This semester-long course will survey the rapidly expanding field of geometric group theory, focusing on the role played by negative curvature. We will begin with classical combinatorial techniques used to construct and study infinite discrete groups. After introducing basic concepts in coarse geometry, we will turn our attention to Gromov's notion of hyperbolic groups. In addition to studying geometric, algebraic, and algorithmic properties of these groups, we will keep an eye towards several generalizations of hyperbolicity that have recently played a large role in understanding many geometrically significant groups. As examples, we will also touch on the study of mapping class groups, outer automorphism groups of free groups, and cubical groups.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 8061|Minimum Grade of B-|May not be taken concurrently)
AND (MATH 8062|Minimum Grade of B-|May not be taken concurrently)

MATH 9082. Independent Study. 1 to 3 Credit Hour.
Independent research supervised by a Mathematics faculty member.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9083. Independent Study. 1 to 3 Credit Hour.
Independent research supervised by a Mathematics faculty member.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9100. Topics in Algebra. 3 Credit Hours.
Variable topics in theory of commutative and non-commutative rings, groups, algebraic number theory, algebraic geometry.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9110. Topics in Algebra. 3 Credit Hours.
Variable topics in theory of commutative and non-commutative rings, groups, algebraic number theory, algebraic geometry.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.
MATH 9120. Seminar in Algebra. 3 Credit Hours.
The seminar aims to lead participating students up to the frontier of current research in algebra. The typical formats are single lectures or short series of lectures by students or the instructor on various topics in algebra, including noncommutative algebra, representation theory, group theory, operads and connections to mathematical physics. Occasionally, slightly longer mini-courses are presented in the framework of the seminar or an entire semester is devoted to a single topic of particular interest.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9200. Topics in Numerical Analysis. 3 Credit Hours.
These courses cover some basic, as well as advanced topics in numerical analysis. The topics can be changed from time to time. The usual topics include: scientific computing, numerical methods for differential equations, computational fluid dynamics, Monte Carlo simulation, Optimization, Sparse matrices, Fast Fourier transform and applications, etc.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9210. Topics in Numerical Analysis. 3 Credit Hours.
These courses cover some basic, as well as advanced topics in numerical analysis. The topics can be changed from time to time. The usual topics include: scientific computing, numerical methods for differential equations, computational fluid dynamics, Monte Carlo simulation, Optimization, Sparse matrices, Fast Fourier transform and applications, etc.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9300. Seminar in Probability. 3 Credit Hours.
Research topics related to probability theory are presented in the seminar. Topics vary depending on the interests of the students and the instructor. Current topics include stochastic calculus with applications in mathematical finance, statistical mechanics, interacting particle systems, percolation, and probability models in mathematical physics.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9310. Seminar in Probability. 3 Credit Hours.
Research topics related to probability theory are presented in the seminar. Topics vary depending on the interests of the students and the instructor. Current topics include stochastic calculus with applications in mathematical finance, statistical mechanics, interacting particle systems, percolation, and probability models in mathematical physics.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9400. Topics in Analysis. 3 Credit Hours.
Variable content course.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9410. Topics in Functional Analysis. 3 Credit Hours.
This is a year-long sequence. The content varies from time to time depending on the interests of the students. Typical topics include some of the following: pseudodifferential operators, Fourier integral operators, singular integral operators, applications to partial differential equations.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.
MATH 9420. Topics in Differential Equations II. 3 Credit Hours.
This is a year-long sequence. Topics covered may include the theory of elliptic partial differential equations in divergence form and non-divergence form, and nonlinear PDEs. These courses may also focus on pseudodifferential operators and Fourier integral operators.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9991. Master's Research Projects. 1 to 6 Credit Hour.
Short-term, limited research project or laboratory project in the field. This course is not the capstone project course, nor can it be used for thesis based research. The course is for master's students only, including PSM, MA or MS. This class will not confer full-time program status unless nine credits are taken.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Degree Restrictions: Must be enrolled in one of the following Degrees: Master of Arts, Master of Science, Prof Science Masters.

Repeatability: This course may be repeated for additional credit.

MATH 9994. Preliminary Examination Preparation. 1 to 6 Credit Hour.
This course is required for students who are preparing for the preliminary or candidacy examination. Students should enroll after coursework is completed or when preparing for the candidacy exam until the time that the preliminary or candidacy examination is completed. This course will confer full-time status at the minimum credit hour registration limit of one credit. All students must complete a minimum of one credit of this course. Students must complete a total of 6 credit hours of 9994, 9998 and 9999.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9995. Capstone Project. 1 to 6 Credit Hour.
Capstone project for master's students including students in PSM, MA or MS. This class will provide full-time status. Students in PSM programs need to register for at least one credit of this course to fulfill program requirements. Additional credits may be required for specific programs. This course will confer full-time status at the minimum credit hour registration limit of one credit.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Degree Restrictions: Must be enrolled in one of the following Degrees: Master of Arts, Master of Science, Prof Science Masters.

Repeatability: This course may be repeated for additional credit.

MATH 9996. Master's Thesis Research. 1 to 6 Credit Hour.
Course for master's thesis research. Only intended for students in thesis bearing master's programs. A minimum of one credit is required. This course will confer full-time status at the minimum credit hour registration limit of one credit.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9998. Pre-Dissertation Research / Elevation to Candidacy. 1 to 6 Credit Hour.
This course is intended for students who are performing research prior to candidacy. Students can register for this course after required courses are completed. This course will confer full-time status at the minimum credit hour registration limit of one credit. Students must be registered for this course during the semester that they are to be elevated to candidacy examination. Students must complete a total of 6 credit hours of 9994, 9998 and 9999.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Repeatability: This course may be repeated for additional credit.

MATH 9999. Dissertation Research. 1 to 6 Credit Hour.
The course is for Ph.D. students who have been elevated to candidacy. During the course of their candidacy students must complete a minimum of two credits of dissertation research. This course will confer full-time status at the minimum credit hour registration limit of one credit. Students must complete a total of 6 credit hours of 9994, 9998 and 9999.

Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate.

Student Attribute Restrictions: Must be enrolled in one of the following Student Attributes: Dissertation Writing Student.

Repeatability: This course may be repeated for additional credit.