Statistical Science and Data Analytics

Sanat K. Sarkar, Chair and Cyrus H. K. Curtis Professor
Office: Speakman Hall 390
sanat@temple.edu

Alexandra D. Carides, Director, Statistics Undergraduate Program
Assistant Professor Instructional Track
Office: Speakman Hall 345
alexandra.carides@temple.edu

The Statistical Science Department offers the Bachelor of Science (B.S.) in Statistical Science and Data Analytics. The 2015 Best Jobs list compiled by CareerCast (a Local and National Job search company) and cited by Forbes, ranks Statistician as No. 4 and Data Scientist as No. 6, while the entire top 10 list is a STEM list. As we survey representatives from different companies, the consistent message we receive is that the cost of hiring and the demand for talent are skyrocketing. The demand is driven by the proliferation of computing technology, software and statistical tools for capturing and interpreting the substantial volume of data now available at the enterprise, government and personal levels.

The educational objective of the program is to provide graduates with a rigorous and broad-based curriculum providing:

1. Rigorous quantitative foundation
2. Alignment and coordination with the established quantitative disciplines at Fox and at Temple University
3. Exposure to programming and modern languages such as C, SAS, etc., including preparation for future SAS certification exams, after obtaining the Basics SAS certificate during the program
4. Effective communication skills

The major areas of employment mentioned in the report are: decision-making in business, healthcare, policy, as well as in social media, and commercial areas. In these areas, there are large bodies of data accumulated over the internet, in need of being explored, understood, and analyzed. Statisticians will also be increasingly needed in the pharmaceutical industry. Biostatisticians will be needed to conduct the research and clinical trials necessary for companies to obtain approval for their products from the Food and Drug Administration. Another area of employment for statisticians is the government, where policy analysis is needed more and more. There is also growth projected for future graduates in statistics in research and development in the physical, engineering, and life sciences, where statisticians' skills in designing tests and assessing results are highly useful.

Reputable national organizations, like the American Statistical Association (ASA), endorse the value of undergraduate programs in statistics as a reflection of the increasing importance of the discipline (http://www.amstat.org/asa/education/home.aspx/curriculumguidelines.cfm last updated November 15, 2014). Statistics programs should be flexible enough to prepare bachelor’s graduates to either be functioning statisticians in a service-oriented economy or go on to graduate school. The 2014 ASA guidelines for curriculum development address required changes in curriculum and suggest pedagogy in response to the strong upward demand for statisticians. Institutions need to ensure students entering the work force or heading to graduate school have the appropriate capacity to “think with data” and to pose and answer statistical questions.

Summary of Requirements

University Requirements

All new students are required to complete the university's General Education (GenEd) curriculum.

Note that students not continuously enrolled who have not been approved for a Leave of Absence or study elsewhere must follow University requirements current at the time of re-enrollment.

College Requirements

Students must meet College Graduation Requirements (http://bulletin.temple.edu/undergraduate/fox-business-management/#requirements-text) for the Bachelor of Science, including the requirements of the major listed below. Students must attain an overall GPA of 2.0 and a 2.0 GPA in the major to graduate as a Statistical Science and Data Analytics major. To calculate the GPA in the major, use the major GPA calculator (http://www.fox.temple.edu/advising/students/gpa-calculator).

Core Requirements

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 2104</td>
<td>Excel for Business Applications</td>
<td>1</td>
</tr>
<tr>
<td>ECON 1101</td>
<td>Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 1901</td>
<td>Honors Macroeconomic Principles</td>
<td></td>
</tr>
<tr>
<td>ECON 1102</td>
<td>Microeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>or ECON 1902</td>
<td>Honors Microeconomic Principles</td>
<td></td>
</tr>
<tr>
<td>Course</td>
<td>Title</td>
<td>Credits</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>HRM 1101</td>
<td>Leadership and Organizational Management</td>
<td>3</td>
</tr>
<tr>
<td>or HRM 1901</td>
<td>Honors Leadership and Organizational Management</td>
<td></td>
</tr>
<tr>
<td>MATH 1041</td>
<td>Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1941</td>
<td>Honors Calculus I</td>
<td></td>
</tr>
<tr>
<td>MATH 1042</td>
<td>Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>or MATH 1942</td>
<td>Honors Calculus II</td>
<td></td>
</tr>
<tr>
<td>STAT 2103</td>
<td>Statistical Business Analytics</td>
<td>4</td>
</tr>
<tr>
<td>or STAT 2903</td>
<td>Honors Statistical Business Analytics</td>
<td></td>
</tr>
<tr>
<td>ACCT 2101</td>
<td>Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>or ACCT 2901</td>
<td>Honors Financial Accounting</td>
<td></td>
</tr>
<tr>
<td>BA 2196</td>
<td>Business Communications</td>
<td>3</td>
</tr>
<tr>
<td>or BA 2996</td>
<td>Honors Business Communications</td>
<td></td>
</tr>
<tr>
<td>CIS 1051</td>
<td>Introduction to Problem Solving and Programming in Python</td>
<td>4</td>
</tr>
<tr>
<td>CIS 1068</td>
<td>Program Design and Abstraction</td>
<td>4</td>
</tr>
<tr>
<td>MKTG 2101</td>
<td>Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>or MKTG 2901</td>
<td>Honors Marketing Management</td>
<td></td>
</tr>
<tr>
<td>RMI 2101</td>
<td>Introduction to Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>or RMI 2901</td>
<td>Honors Introduction to Risk Management</td>
<td></td>
</tr>
<tr>
<td>Total Credit Hours</td>
<td></td>
<td>42</td>
</tr>
</tbody>
</table>

Major Requirements

Students must follow the Major Requirements and College Requirements current at the time of declaration. Students not continuously enrolled who have not been approved for a Leave of Absence or study elsewhere must follow University, College, and Major requirements current at the time of re-enrollment.

Requirements of Statistical Science and Data Analytics Major

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2501</td>
<td>Quantitative Foundations for Data Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2512</td>
<td>Intermediate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2521</td>
<td>Data Analysis and Statistical Computing (fall only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2522</td>
<td>Survey Design and Sampling (spring only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2523</td>
<td>Design of Experiments and Quality Control (fall only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3502</td>
<td>Regression and Predictive Analytics (fall only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3503</td>
<td>Intermediate Business Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3504</td>
<td>Time Series and Forecasting Models (fall only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3505</td>
<td>Introduction to SAS for Data Analytics (spring only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 3506</td>
<td>Nonparametric and Categorical Data Analysis (spring only)</td>
<td>3</td>
</tr>
<tr>
<td>STAT 4596</td>
<td>and Customer Data Analytics</td>
<td>3</td>
</tr>
</tbody>
</table>

Focus Area

Select one set from the following: 6-8

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACCT 2102</td>
<td>Managerial Accounting</td>
<td></td>
</tr>
<tr>
<td>& FIN 3101</td>
<td>and Financial Management</td>
<td></td>
</tr>
<tr>
<td>CIS 1166</td>
<td>Mathematical Concepts in Computing I</td>
<td></td>
</tr>
<tr>
<td>& CIS 2109</td>
<td>and Database Management Systems</td>
<td></td>
</tr>
<tr>
<td>HCM 3501</td>
<td>Introduction to Health Services Systems</td>
<td></td>
</tr>
<tr>
<td>& HCM 3502</td>
<td>and Healthcare Financing and Information Technology</td>
<td></td>
</tr>
<tr>
<td>MKTG 3508</td>
<td>Digital Marketing</td>
<td></td>
</tr>
<tr>
<td>& MKTG 3509</td>
<td>and Customer Data Analytics</td>
<td></td>
</tr>
<tr>
<td>MSP 1011</td>
<td>Introduction to Media Theory</td>
<td></td>
</tr>
<tr>
<td>& MSP 1701</td>
<td>and Introduction to Media Technology</td>
<td></td>
</tr>
<tr>
<td>or MSP 2141</td>
<td>Media Research</td>
<td></td>
</tr>
<tr>
<td>MSOM 3101</td>
<td>Operations Management</td>
<td></td>
</tr>
<tr>
<td>& SCM 3515</td>
<td>and Principles of Supply Chain Management</td>
<td></td>
</tr>
</tbody>
</table>
Suggested Academic Plan

Bachelor of Science in Statistical Science and Data Analytics

Requirements for New Students starting in the 2017-2018 Academic Year

Please note that this plan is suggested only, ensuring prerequisites are met.

Year 1

<table>
<thead>
<tr>
<th>Fall</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1041 Calculus I (waives GenEd Quantitative Literacy requirement)</td>
<td>4</td>
</tr>
<tr>
<td>BA 2104 Excel for Business Applications</td>
<td>1</td>
</tr>
<tr>
<td>ECON 1102 Microeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>HRM 1101 Leadership and Organizational Management</td>
<td>3</td>
</tr>
<tr>
<td>ENG 0802, 0812, or 0902 Analytical Reading and Writing [GW]</td>
<td>4</td>
</tr>
<tr>
<td>Term Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1042 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>STAT 2103 Statistical Business Analytics</td>
<td>4</td>
</tr>
<tr>
<td>ECON 1101 Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>IH 0851 or 0951 Intellectual Heritage I: The Good Life [GY]</td>
<td>3</td>
</tr>
<tr>
<td>GenEd Breadth Course</td>
<td>3</td>
</tr>
<tr>
<td>Term Credit Hours</td>
<td>17</td>
</tr>
</tbody>
</table>

Year 2

<table>
<thead>
<tr>
<th>Fall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2521 Data Analysis and Statistical Computing</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2101 Financial Accounting</td>
<td>3</td>
</tr>
<tr>
<td>BA 2196 Business Communications [WI]</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1051 Introduction to Problem Solving and Programming in Python</td>
<td>4</td>
</tr>
<tr>
<td>IH 0852 or 0952 Intellectual Heritage II: The Common Good [GZ]</td>
<td>3</td>
</tr>
<tr>
<td>Term Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2501 Quantitative Foundations for Data Science</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2522 Survey Design and Sampling</td>
<td>3</td>
</tr>
<tr>
<td>CIS 1068 Program Design and Abstraction</td>
<td>4</td>
</tr>
<tr>
<td>MKTG 2101 Marketing Management</td>
<td>3</td>
</tr>
<tr>
<td>RMI 2101 Introduction to Risk Management</td>
<td>3</td>
</tr>
<tr>
<td>Term Credit Hours</td>
<td>16</td>
</tr>
</tbody>
</table>

Year 3

<table>
<thead>
<tr>
<th>Fall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2512 Intermediate Statistics</td>
<td>3</td>
</tr>
<tr>
<td>STAT 2523 Design of Experiments and Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>Focus Area Elective¹</td>
<td>3</td>
</tr>
<tr>
<td>GenEd Breadth Course</td>
<td>3</td>
</tr>
<tr>
<td>GenEd Breadth Course</td>
<td>3</td>
</tr>
<tr>
<td>Term Credit Hours</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spring</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3503 Intermediate Business Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Year 4</td>
<td>Term Credit Hours</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Fall</td>
<td></td>
</tr>
<tr>
<td>STAT 3502</td>
<td>Regression and Predictive Analytics 3</td>
</tr>
<tr>
<td>STAT 3504</td>
<td>Time Series and Forecasting Models 3</td>
</tr>
<tr>
<td>GenEd Breadth Course</td>
<td>3</td>
</tr>
<tr>
<td>GenEd Breadth Course</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Term Credit Hours 15</td>
</tr>
<tr>
<td>Spring</td>
<td></td>
</tr>
<tr>
<td>STAT 3506</td>
<td>Nonparametric and Categorical Data Analysis 3</td>
</tr>
<tr>
<td>STAT 4596</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>3</td>
</tr>
<tr>
<td>Free Elective</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Term Credit Hours 13</td>
</tr>
<tr>
<td></td>
<td>Total Credit Hours: 122</td>
</tr>
</tbody>
</table>

1. See Requirements (p. 1) section for list of Focus Area courses.

Courses

STAT 0826. Statistics in the News. 4 Credit Hours.
Through discussion of approximately 50 news articles, learn basic principles of statistics. This course focuses on the relevance, interpretation and usage of statistics in the news media. It has no quantitative prerequisites and involves more reading than math aptitude. Statistics deals with the study of variability, uncertainty, and decision-making, and has applicability to most other disciplines and everyday life. NOTE: This course fulfills the Quantitative Literacy (GQ) requirement for students under GenEd and a Quantitative Reasoning (QA or QB) requirement for students under Core.

Course Attributes: GQ

Repeatability: This course may not be repeated for additional credits.

STAT 0827. Statistical Reasoning & Games of Chance. 4 Credit Hours.
This is a beginning course in probability and statistics with special emphasis on the critical analysis of games of chance. The objectives of the course are to introduce several quantitative concepts with real-life applications. These applications are related to situations that involve fallacies in reasoning, equity markets and games of chance. NOTE: This course fulfills the Quantitative Literacy (GQ) requirement for students under GenEd and a Quantitative Reasoning (QA or QB) requirement for students under Core.

Course Attributes: GQ

Repeatability: This course may not be repeated for additional credits.
STAT 1001. Quantitative Methods for Business I. 3 Credit Hours.
Fundamentals of mathematics and Excel are necessary for a student to pursue their degree at the Fox School of Business and Management. Topics and illustrations are specifically directed to applications in business and economics throughout this course. The overarching theme of this class is to solidify foundational quantitative and Excel skills and use those skills to solve relevant business applications.

Course Attributes: QA

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 0701 to 0702|Required Courses:1|Minimum Grade of C-|May not be taken concurrently
OR STA1 Y|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR MATH 1011|Minimum Grade of C-|May not be taken concurrently
OR MATH 1021|Minimum Grade of C-|May not be taken concurrently
OR ST1A Y|May not be taken concurrently
OR ST2A Y|May not be taken concurrently.

STAT 1102. Quantitative Methods for Business II. 4 Credit Hours.
Fundamentals of mathematics and Excel are necessary for a student to pursue their degree at the Fox School of Business and Management. Topics and illustrations are specifically directed to applications in business and economics throughout this course. The overarching theme of this class is to prepare students to be proficient in areas of quantitative analysis, and to use those skills to solve relevant business applications. The course will also include broader and deeper applications of the topics from STAT 1001. Excel will be used to reinforce topics and present solutions.

Course Attributes: QB

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 1022|Minimum Grade of C-|May not be taken concurrently
OR STAT 1001|Minimum Grade of C-|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR STT2 Y|May not be taken concurrently
OR ST2A Y|May not be taken concurrently.
STAT 1902. Honors Quantitative Methods for Business II. 3 Credit Hours.
Continuation of Statistics 1001 (C011). Introduction to Differential and Integral Calculus. Topics include functions and graphs, differentiation of polynomial, logarithmic, exponential, and rational functions. Higher order derivatives with applications, maximum and minimum, break-even analysis and market equilibrium. Integration: antiderivative and the definite integral with applications to marginal analysis and other problems in business and economics. Use of a graphic calculator. NOTE: (1) Math C075 (taken prior to Summer 2007 session) and some other higher level Math courses can substitute for Statistics 1902. Please check with your academic advisor when making your course selection. (2) This course can be used to satisfy the university Core Quantitative Reasoning B (QB) requirement. Although it may be usable towards graduation as a major requirement or university elective, it cannot be used to satisfy any of the university GenEd requirements. See your advisor for further information. (3) Prior to fall 2014, the title of STAT 1902 was "Honors Calculus for Business."

Cohort Restrictions: Must be enrolled in one of the following Cohorts: SCHONORS, UHONORS, UHONORSTR.

Course Attributes: HO, QB

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 1022|Minimum Grade of C-|May not be taken concurrently
OR STAT 1001|Minimum Grade of C-|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR STT2 Y|May not be taken concurrently
OR ST2A Y|May not be taken concurrently.

STAT 2103. Statistical Business Analytics. 4 Credit Hours.
This course will cover the fundamentals of data description, data analysis, and graphical methods with applications to business problems. Topics include random variables, discrete and continuous distributions, estimation of parameters, and hypothesis testing. Students will gain proficiency in simple and multiple regression models and forecasting. Excel will be used for data analysis and to reinforce topics taught in class.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 1022|Minimum Grade of C-|May not be taken concurrently
OR STAT 1001|Minimum Grade of C-|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR STT2 Y|May not be taken concurrently
OR MATH 1021|Minimum Grade of C-|May not be taken concurrently
OR ST2A Y|May not be taken concurrently)
AND (STAT 1102|Minimum Grade of C-|May not be taken concurrently
OR STAT 1902|Minimum Grade of C-|May not be taken concurrently
OR MATH 1031|Minimum Grade of C-|May not be taken concurrently
OR MATH 1041|Minimum Grade of C-|May not be taken concurrently
OR MATH 1941|Minimum Grade of C-|May not be taken concurrently
OR MATH 1038|Minimum Grade of C-|May not be taken concurrently
OR STT3 Y|May not be taken concurrently)
STAT 2104. Selected Topics in Statistical Business Analytics. 1 Credit Hour.
Statistics 2104 is a one credit hour course that covers probability rules, joint and conditional probability, inference, confidence intervals, hypothesis tests, two sample design, simple linear regression, inference for regression, and multiple regression. NOTE: This course is designed for transfer students who have successfully completed a 3 credit hour introductory statistics course. This one credit hour course will bridge the gap between a 3 credit hour introductory statistics course taken at another institution, and the 4 credit hour Statistics 2103 (Business Statistics) course at Fox. Prior to fall 2014, the title of STAT 2104 was "Selected Topics in Business Statistics."

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 1022|Minimum Grade of C|May not be taken concurrently)
OR STAT 1001|Minimum Grade of C|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR STT2 Y|May not be taken concurrently
OR MATH 1021|Minimum Grade of C|May not be taken concurrently
AND (STAT 1102|Minimum Grade of C|May not be taken concurrently)
OR STAT 1902|Minimum Grade of C|May not be taken concurrently
OR MATH 1031|Minimum Grade of C|May not be taken concurrently
OR MATH 1041|Minimum Grade of C|May not be taken concurrently
OR MATH 1941|Minimum Grade of C|May not be taken concurrently
OR MATH 1038|Minimum Grade of C|May not be taken concurrently
OR STT3 Y|May not be taken concurrently
AND (STAT 2101|Minimum Grade of C|May not be taken concurrently)
OR STAT 2901|Minimum Grade of C|May not be taken concurrently
OR MATH 1013|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR STAT 2512|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently)

STAT 2501. Quantitative Foundations for Data Science. 3 Credit Hours.
This course will cover topics in linear algebra, matrix theory, advanced calculus, optimization and numerical techniques. This course will allow students to acquire knowledge necessary in understanding concepts in statistical theory and methods. Students will apply quantitative analysis, critical thinking and interpretation to real-life problems in diverse areas, like business, engineering, healthcare, etc.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 1041|Minimum Grade of C|May not be taken concurrently)
AND (MATH 1042|Minimum Grade of C|May not be taken concurrently)

STAT 2512. Intermediate Statistics. 3 Credit Hours.
This course covers the basics of statistical estimation theory, in preparation for further study in regression, time series analysis, and forecasting (as tested on the SOA/CAS Course 4 professional examination). Topics include: classical point estimation methods; construction of confidence intervals; tests of statistical hypotheses; and basic analysis of categorical data. NOTE: This course replaces the Statistics 2102 (0022) Business Core requirement for Actuarial Science majors.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
AS 2101|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently.
STAT 2521. Data Analysis and Statistical Computing. 3 Credit Hours.
This course presents practical applications of statistical methods using software. The emphasis is on giving students experience in solving real life problems using appropriate statistical methods. Statistical techniques studied include organization and presentation of data, statistical testing, multiple regression, Chi-Square tests and logistic regression. Case studies and projects, with applications, are used to show the application of statistical methods to business problems. Through this course students should be able to select, utilize and apply quantitative statistical methods to real life problems, and get familiar with data analysis using statistical software. The main statistical software we use is SPSS. Students will also be exposed to other packages, such as Excel and R.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently

STAT 2522. Survey Design and Sampling. 3 Credit Hours.
This course presents the principal applications of sample surveys, survey design, criteria of a good sample design, and characteristics of simple random sampling, stratified random sampling, and cluster sampling. Case studies are used where appropriate to illustrate applications of survey sampling. Emphasis will be placed on both the theory and methodology of surveying and include sampling principles, sample design, questionnaire construction, and response problems.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
STAT 2523. Design of Experiments and Quality Control. 3 Credit Hours.
The first part of this course provides students with insight into statistically designed experiments and related topics. The course covers the fundamental statistical concepts required for designing efficient experiments to answer real questions. The fundamental concepts of replication, blocking, and randomization are examined. Topics covered include block designs, balanced incomplete block designs, and Latin Square designs. Additional topics include factorial experiments, fractional factorial designs, and orthogonal arrays. The course also introduces students to response surface methodology, mixture designs, and conjoint analysis. Quality improvement can be accomplished using experimental design principles. The second part of the course covers the core principles of the management of quality in the production of goods and services. Statistical quality control techniques are used in the implementation of these principles. Topics covered include control charts, cusum procedures, and Taguchi methods.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
OR POLS 0825|Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently.
STAT 2903. Honors Statistical Business Analytics. 4 Credit Hours.
This course provides students with the fundamental concepts and tools needed to understand the role of statistics and business analytics in organizations. It covers basic descriptive statistics, probability, and statistical inference. Topics include probability distributions, random sampling and sampling distributions, point and interval estimation, and hypothesis testing. The course also covers hypothesis testing for several populations, correlation, simple linear regression, multiple regression, and an introduction to data mining. Use of Excel for data analysis and inference. NOTE: This course is a four credit hour course which will substitute for Statistics 2101 (C021) and 2102 (0022) for Fox School students. Prior to fall 2014, the title of STAT 2903 was “Honors Business Statistics.”

Cohort Restrictions: Must be enrolled in one of the following Cohorts: SCHONORS, UHONORS, UHONORSTR.

Course Attributes: HO

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(MATH 1022|Minimum Grade of C-|May not be taken concurrently
OR STAT 1001|Minimum Grade of C-|May not be taken concurrently
OR STA2 Y|May not be taken concurrently
OR SIT2 Y|May not be taken concurrently
OR MATH 1021|Minimum Grade of C-|May not be taken concurrently
OR STT2 Y|May not be taken concurrently
AND (STAT 1102|Minimum Grade of C-|May not be taken concurrently
OR STAT 1902|Minimum Grade of C-|May not be taken concurrently
OR MATH 1031|Minimum Grade of C-|May not be taken concurrently
OR MATH 1041|Minimum Grade of C-|May not be taken concurrently
OR MATH 1941|Minimum Grade of C-|May not be taken concurrently
OR MATH 1038|Minimum Grade of C-|May not be taken concurrently
OR STT3 Y|May not be taken concurrently)

STAT 3501. Statistics for Engineers. 3 Credit Hours.
Not to be taken by School of Business and Management students; open only to Engineering students. Descriptive statistics, inference, regression and correlation, and experimental design. Engineering applications.

College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
MATH 1041|Minimum Grade of C-|May not be taken concurrently
OR MATH 1941|Minimum Grade of C-|May not be taken concurrently
OR MATH 1038|Minimum Grade of C-|May not be taken concurrently.
STAT 3502. Regression and Predictive Analytics. 3 Credit Hours.
The course covers a variety of statistical methods useful in interdisciplinary research, such as simple and multiple regression analysis, ANOVA, analysis of covariance, logistic regression, and predictive models. Emphases are placed on rationales, assumptions, techniques, and interpretation of results from computer packages.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently
AND (STAT 2501|Minimum Grade of C|May not be taken concurrently)
AND (STAT 2512|Minimum Grade of C|May not be taken concurrently)

STAT 3503. Intermediate Business Statistics. 3 Credit Hours.
Topics will be chosen from multiple regression, forecasting, and time series. Standard statistical packages will be introduced and used extensively. The course will emphasize applications in business such as financial forecasting, production management, and actuarial science. This course has been approved by the Society of Actuaries/Casualty Actuarial Society for VEE - Applied Statistical Methods. Completion of this course with a minimum grade of B- is required for VEE - Applied Statistical Methods credit.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR STAT 2512|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
OR SOCPOL |Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently.
STAT 3504. Time Series and Forecasting Models. 3 Credit Hours.
This time series analysis and forecasting models course with interdisciplinary applications covers important univariate and multivariate time series methods, including ARIMA models, further forecasting methods (logistic regression, ARIMA), centered and training Moving Average (MA). Students will apply the body of theoretical knowledge to analyzing real-life data sets.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently
AND (STAT 2501|Minimum Grade of C|May not be taken concurrently)
AND (STAT 2512|Minimum Grade of C|May not be taken concurrently)

STAT 3505. Introduction to SAS for Data Analytics. 3 Credit Hours.
This course is an introduction to programming for statistical analysis using the SAS Software System. Students will learn data set creation by data transformation to/from SAS using Import and Export functions. Concatenation, merging and subsetting data, as well as data restructuring and new variable construction using arrays and SAS functions will be taught. Simple procedures to clean and perform quality control of data, as well as procedures for calculating descriptive statistics, plots, and print outs will be covered. Laboratory exercises and homework assignments include brief exercises as well as manipulation and analysis of real data sets.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
OR POLS 0825|Minimum Grade of C|May not be taken concurrently
AND (STAT 2501|Minimum Grade of C|May not be taken concurrently)
AND (STAT 2512|Minimum Grade of C|May not be taken concurrently)
STAT 3506. Nonparametric and Categorical Data Analysis. 3 Credit Hours.

This course covers estimation and testing of hypotheses when the functional form of the population distribution is not completely specified. The topics also include sampling models and analyses for discrete data: Fisher's exact test, logistic regression, ROC analysis, log-linear models and Poisson regression, conditional logistic regression, Cochran-Mantel-Haenszel test, measures of agreement between observers, quasi-independence, multinomial logit models, proportional odds model, association models, generalized estimating equations (GEE). Students work with R and SAS throughout the semester.

Repeatability: This course may not be repeated for additional credits.

Pre-requisites:
(STAT 2103|Minimum Grade of C|May not be taken concurrently
OR STAT 2903|Minimum Grade of C|May not be taken concurrently
OR STAT 2104|Minimum Grade of C|May not be taken concurrently
OR STAT 2501|Minimum Grade of C|May not be taken concurrently
OR MATH 3031|Minimum Grade of C|May not be taken concurrently
OR MATH 3204|Minimum Grade of C|May not be taken concurrently
OR SOC 1167|Minimum Grade of C|May not be taken concurrently
OR CEE 3048|Minimum Grade of C|May not be taken concurrently
OR PSY 1167|Minimum Grade of C|May not be taken concurrently
OR PSY 2168|Minimum Grade of C|May not be taken concurrently
OR AS 2101|Minimum Grade of C|May not be taken concurrently
OR ECE 3522|Minimum Grade of C|May not be taken concurrently
OR SOC 0825|Minimum Grade of C|May not be taken concurrently
OR ANTH 0825|Minimum Grade of C|May not be taken concurrently
OR POLS 0825|Minimum Grade of C|May not be taken concurrently
OR PSY 0825|Minimum Grade of C|May not be taken concurrently)
AND (STAT 2512|Minimum Grade of C|May not be taken concurrently)
AND (STAT 2512|Minimum Grade of C|May not be taken concurrently)

STAT 3580. Special Topics - Statistics. 3 Credit Hours.

Special topics in current developments in the field of statistics.

College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School.

Repeatability: This course may be repeated for additional credit.

STAT 3582. Independent Study. 1 to 6 Credit Hour.

Readings, papers and/or laboratory work under supervision of a faculty member.

College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School.

Repeatability: This course may be repeated for additional credit.