About the Program

The Department of Statistics offers an M.S. program through which students acquire in-depth knowledge of statistics. Graduates are trained to serve as professional statisticians in industry, research organizations, or government.

Time Limit for Degree Completion: 3 years

Campus Location: Main

Business foundation classes are offered throughout the year. Upper-level courses are not offered at all campuses. Courses may also be offered online.

Full-Time/Part-Time Status: Students complete the degree program through classes offered after 4:30 p.m. The degree program can be completed on a full- or part-time basis.

Ranking: The Fox School of Business and Management is highly ranked. Current ranking information may be viewed at http://www.fox.temple.edu/cms_about-fox/rankings/.

Areas of Specialization: Faculty members offer master’s students substantial coursework in statistical theory and applications.

Job Prospects: Graduates of the master’s program may find employment as statisticians in the pharmaceutical industry, in medical research organizations, or in other areas of business and government.

Non-Matriculated Student Policy: Students with an undergraduate GPA of 3.0 or above may take classes on a non-matriculated status. Non-matriculated students can take a maximum of 9 credit hours.

Financing Opportunities: Assistantships are typically reserved for those engaged in doctoral study.

Admission Requirements and Deadlines

Application Deadline:

Fall: March 1; December 15 international
Spring: September 30; August 1 international

Applications are processed as they are received throughout the year. Late applications may be considered for admission. International students who miss the December 15 or August 1 deadline are required to submit to Temple University an evaluation of their transcript(s) by an approved educational evaluation firm.

APPLY ONLINE to this Fox graduate program at http://fox.force.com/SiteLogin.

Letters of Reference:

Number Required: 2
From Whom: Professional references from an immediate supervisor, current or past, are preferred. Academic references are acceptable.

Coursework Required for Admission Consideration: Students must have taken two terms of university-level Calculus or its equivalent. A course in Linear Algebra is also desirable.

Bachelor’s Degree in Discipline/Related Discipline: A baccalaureate degree is required, although it need not be in a business discipline.

Statement of Goals: A statement of goals is required.

Standardized Test Scores:

GRE/GMAT: Required. Quantitative and verbal scores on the GRE should be in the 50th percentile or above. Scores under 500 on the GMAT are not considered for the M.S. program.

TOEFL: 88 iBT or 575 PBT minimum. Any student admitted with a TOEFL score below 100 iBT or 600 PBT must pass an English skills course during the first term of enrollment at Temple University. Those having taken the PBT have the additional option of testing out of the English course by taking and passing the SPEAK test at Temple.

Resume: Current resume required.
Transfer Credit: Upper-level graduate credits from an accredited graduate program, but not previously applied to a conferred degree, may be transferred into the M.S. program. The credits must be part of the required degree program at Temple University. To be transferred, the grade must be a "B" or better. The Admissions Committee makes recommendations with regard to transfer credits to the Director of the Graduate Program in Statistics. The maximum number of credits a student may transfer is 6.

Program Requirements

General Program Requirements:
Number of Didactic Credits Required Beyond the Baccalaureate: 30

Required Courses:

Core Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 8001</td>
<td>Probability and Statistics Theory I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 8002</td>
<td>Probability and Statistics Theory II</td>
<td>3</td>
</tr>
<tr>
<td>STAT 8003</td>
<td>Statistical Methods I</td>
<td>3</td>
</tr>
<tr>
<td>STAT 8004</td>
<td>Statistical Methods II</td>
<td>3</td>
</tr>
</tbody>
</table>

Graduate Business Electives \(^1\) 18

Total Credit Hours 30

\(^1\) Students select electives in consultation with the Director of the Graduate Program.

Culminating Events:

M.S. Core Exams:
Two exams, one in theory and one in methods, are offered in the first or second week of June each year.

Contacts

Program Contact Information:

Department Information:

Fox School of Business and Management
329 Speakman Hall
1810 North 13th Street
Philadelphia, PA 19122
foxinfo@temple.edu
215-204-5890
215-204-7678
215-204-1632 (fax)

Department Contacts:

Admissions:
Phyllis Tutora
Director of Graduate Enrollment Management, MBA and MS Programs
ptutora@temple.edu
215-204-1184
710 Alter Hall

Director of the Graduate Program:
Jagbir Singh, Ph.D.
Professor
jagbir@temple.edu
215-204-5069
329 Speakman Hall
Courses

STAT 5001. Quantitative Methods for Business. 1 to 3 Credit Hour.
This course is designed to introduce you to contemporary elementary applied statistics and to provide you with an appreciation for the uses of statistics in business, economics, everyday life, as well as hands-on capabilities needed in your later coursework and professional employment.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School
Repeatability: This course may not be repeated for additional credits.

STAT 5002. Introduction to Biostatistics. 3 Credit Hours.
Topics cover statistical methods and concepts with special emphasis on applications in health and biological sciences.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits.

STAT 5170. Special Topics. 1 to 6 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 5182. Independent Study. 1 to 6 Credit Hour.
Special study in a particular aspect of statistics under the direct supervision of an appropriate graduate faculty member. No more than six semester hours of independent study may be counted toward degree requirements.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 5190. Special Topics - Stat. 1 to 6 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 5282. Independent Study. 1 to 3 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.
Pre-requisites:
STAT 5001|Minimum Grade of B-|May not be taken concurrently.

STAT 5301. Foundations for Data Analytics. 1.5 Credit Hour.
Statistical analytics provide a competitive edge to organizations by extracting information from data and helping understand risky and random events. Statistical analytics are an important part of the decision making process, allowing managers to make informed strategic decisions that combine executive intuition with a thorough understanding of data. Using statistical methods to extract information from data, and providing an indication of the quality of that information, adds value to an organization’s strategic decision making process. This course is designed to develop strong skills in data analysis, modeling, and decision making under uncertainty. It is designed to train students to use valid inferences from data and make informed decisions. The topics covered in the course include data visualization, descriptive statistics, estimation, hypothesis testing, and regression analysis. This course emphasizes the applications of statistical analytic techniques through lectures, case analysis and computer exercises. Computations are facilitated using Excel, and students are expected to interpret and translate statistical results into a language understood by a non-technical audience.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School
Co-requisites: MIS 5301
Repeatability: This course may not be repeated for additional credits.

STAT 5401. Foundations for Data Analytics. 1.5 Credit Hour.
Statistical analytics provide a competitive edge to organizations by extracting information from data and helping understand risky and random events. Statistical analytics are an important part of the decision making process, allowing managers to make informed strategic decisions that combine executive intuition with a thorough understanding of data. Using statistical methods to extract information from data, and providing an indication of the quality of that information, adds value to an organization’s strategic decision making process. This course is designed to develop strong skills in data analysis, modeling, and decision making under uncertainty. It is designed to train students to use valid inferences from data and make informed decisions. The topics covered in the course include data visualization, descriptive statistics, estimation, hypothesis testing, and regression analysis. This course emphasizes the applications of statistical analytic techniques through lectures, case analysis and computer exercises. Computations are facilitated using Excel, and students are expected to interpret and translate statistical results into a language understood by a non-technical audience.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School
Co-requisites: MIS 5401
Repeatability: This course may not be repeated for additional credits.
STAT 5801. Statistical Analysis for Management. 3 Credit Hours.
In this course, you'll learn how to use statistics to help solve business problems throughout an enterprise. You'll examine case examples of statistical analysis in areas such as marketing, finance and management. You'll learn descriptive and inferential techniques such as regression analysis and how to analyze data and reach decisions, using statistical computer software and Excel.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits.

STAT 5802. Quantitative Techniques for Management. 3 Credit Hours.
In this course you'll apply advanced quantitative techniques for managerial decision-making such as forecasting, linear programming, simulation, decision analysis, Markov chains and game theory. You'll use customized software and Excel to analyze these models extensively and apply them to decisions regarding resource allocation and other managerial problems.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits.

STAT 5890. Special Topics. 1 to 6 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 8001. Probability and Statistics Theory I. 3 Credit Hours.
Topics include basic probability theory and combinatorial problems, generating functions, random variables, probability distributions, law of large numbers, and limit theorems.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8001|Minimum Grade of B-|May not be taken concurrently
AND STAT 8002|Minimum Grade of B-|May not be taken concurrently).

STAT 8002. Probability and Statistics Theory II. 3 Credit Hours.
A comprehensive development of the theory of statistics, including standard distributions, sampling distributions, general theory of estimation, testing of hypotheses, statistical decision theory, order statistics, linear statistical estimation.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8001|Minimum Grade of B|May not be taken concurrently.

STAT 8003. Statistical Methods I. 3 Credit Hours.
Introduction to applied statistics. Topics include data management, probability distributions, parameter estimation, hypothesis testing, sampling methodologies, graphical display, analysis of variance, and simple and multiple regression. Use of R, S-Plus and SAS statistical software.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
MATH 2031|Minimum Grade of B-|May not be taken concurrently.

STAT 8004. Statistical Methods II. 3 Credit Hours.
Design of experiments, analysis of discrete data, introduction to nonparametric methods, logistic regression, ARIMA time series analysis, bootstrapping, jackknife, robustness, and selected topics in multivariate analysis. Use of R, S-Plus and SAS statistical software.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8003|Minimum Grade of B-|May not be taken concurrently.

STAT 8031. Probability and Large Sample Theory. 3 Credit Hours.
An advanced level theoretical course covering measure theoretic probability, some probability inequalities, statistical independence, strong and weak laws of large numbers, convergence in distribution, variance stabilizing transformations, characteristic functions and central limit theorem.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8001|Minimum Grade of B|May not be taken concurrently.
STAT 8101. Stochastic Processes. 3 Credit Hours.
This is a first course in stochastic processes, with an emphasis on continuous-time models that support applications in financial mathematics and
derivative evaluation. The course covers: fundamentals of probability, limit theorems, conditional expectation, change of measures, Markov chains,
random walks, martingales, Brownian motion, the Ito integral, stochastic differential equations, the Black-Scholes model and its use in evaluating a
variety of financial derivatives.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
MATH 1031|Minimum Grade of B-|May not be taken concurrently
OR MATH 1041|Minimum Grade of B-|May not be taken concurrently
OR MATH 1931|Minimum Grade of B-|May not be taken concurrently
OR MATH 1941|Minimum Grade of B-|May not be taken concurrently
OR MATH 1042|Minimum Grade of B-|May not be taken concurrently
OR MATH 1942|Minimum Grade of B-|May not be taken concurrently.

STAT 8102. Statistical Methods III. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8004|Minimum Grade of B-|May not be taken concurrently.

STAT 8103. Sampling Theory. 3 Credit Hours.
Theory and application of sampling from finite populations. Topics include random, stratified, cluster, and systematic sampling; estimation of means and
variances; optimal allocation of resources; problems of nonsampling errors; and ratio and regression estimation.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8003|Minimum Grade of B-|May not be taken concurrently.

STAT 8104. Mathematics for Stat. 3 Credit Hours.
Vector spaces; linear independence of vectors and basis; matrices and algebraic operations on matrices; determinants; rank of a matrix; inverse
of nonsingular matrices; linear equations and their solutions; generalized inverse of a matrix; eigen values and vectors of matrices; diagonalization
theorems; quadratic forms and their reduction to sum of squares; Jacobians.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
MATH 2101|Minimum Grade of B-|May not be taken concurrently
OR MATH 2103|Minimum Grade of B-|May not be taken concurrently.

STAT 8105. Time Series Analysis I. 3 Credit Hours.
Theory and application of univariate time series analysis. Includes both time domain and frequency domain methods. Considers stationary and
nonstationary linear processes, time series model building, forecasting, unit root test, intervention models and outlier detection, spectral theory of
stationary processes, spectral windows, and estimation of spectrum.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8002|Minimum Grade of B-|May not be taken concurrently.

STAT 8106. Linear Models I. 3 Credit Hours.
Covers the basic theory and practice of generalized linear models (GLM), such as the logistic, Poisson and gamma regression, as well as models for
multilevel or longitudinal Gaussian responses, such as the hierarchical linear model and linear mixed model. The students will need to work with R and
SAS throughout the semester.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8002|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8004|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8104|Minimum Grade of B-|May not be taken concurrently).
STAT 8107. Design of Experiments I. 3 Credit Hours.
Principles of experimental designs, completely randomized designs, multiple comparisons, randomized block design, latin square design, missing value problems, analysis of covariance, and factorial experiments.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8004|Minimum Grade of B-|May not be taken concurrently.

STAT 8108. Applied Multivariate Analysis I. 3 Credit Hours.
Multivariate normal distribution; marginal and conditional distributions; estimation of population mean vector and dispersion matrix; correlation, partial correlation, and multiple correlation coefficients; Hotelling’s T2; MANOVA; discriminant function; repeated measurements analysis; principal components and canonical correlation; factor analysis; and multidimensional scaling.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8004|Minimum Grade of B-|May not be taken concurrently) AND (STAT 8104|Minimum Grade of B-|May not be taken concurrently).

STAT 8109. Regression, Time Series, and Forecasting for Business Applications. 3 Credit Hours.
Intermediate level course that covers regression analysis, time series analysis, and forecasting. The course is application oriented and standard statistical packages such as MINITAB are introduced and extensively used.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 5001|Minimum Grade of B-|May not be taken concurrently.

STAT 8111. Survey Techniques for Business Applications. 3 Credit Hours.
Application oriented. A course dealing with statistical and nonstatistical aspects of organizing a sample survey. Included are discussions of objectives, measurement, sample selection, pilot testing, data collection, data editing, summarization and interpretation of results in addition to describing the various sampling schemes. Students may be required to plan and execute a survey.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 5001|Minimum Grade of B-|May not be taken concurrently.

STAT 8112. Statistical Methods for Business Research I. 3 Credit Hours.
Part I of a doctoral level, one-year sequence of courses for the PhD students in Business Administration program. The course covers a variety of statistical methods useful in business research, such as: multiple regression analysis, ANOVA, linear models, analysis of covariance, logistic regression, principal component analysis, exploratory factor analysis and canonical correlation analysis. Emphases are placed on rationales, assumptions, techniques, and interpretation of results from computer packages. Relevant mathematical results will be presented, but proofs or abstract arguments shall be avoided. The lectures cover computer usages, such as R and/or SAS, and the students are expected to work with SAS (or equivalent packages) throughout the semester.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 2101|Minimum Grade of B-|May not be taken concurrently OR STAT 2901|Minimum Grade of B-|May not be taken concurrently OR STAT 2103|Minimum Grade of B-|May not be taken concurrently OR STAT 2903|Minimum Grade of B-|May not be taken concurrently OR MATH 2031|Minimum Grade of B-|May not be taken concurrently OR MATH 3032|Minimum Grade of B-|May not be taken concurrently.

STAT 8113. Statistical Methods for Business Research II. 3 Credit Hours.
Part II of a doctoral level, one-year sequence of courses for the PhD students in Business Administration program. Topics covered in this course are: discriminant analysis, confirmatory factor analysis and structural equations modeling, time-series intervention analysis, survival (event history) analysis, MANOVA, multivariate profile analysis, hierarchical linear models (HLM), linear mixed models (LMM) for multilevel data.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8112|Minimum Grade of B-|May not be taken concurrently.

STAT 8114. Survival Analysis I. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits.
STAT 8115. Nonparametric Methods. 3 Credit Hours.
A thorough course in nonparametric statistics. Estimation and testing of hypothesis when the function form of the population distribution function is not completely specified.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8002|Minimum Grade of B-|May not be taken concurrently.

STAT 8116. Categorical Data Analysis. 3 Credit Hours.
Sampling models and analyses for discrete data: Fisher's exact test; Logistic regression; ROC analysis; Log-linear models and Poisson regression; Conditional logistic regression; Cochran-Mantel-Haenszel test; Measures of agreement between observers; Quasi-independence; Multinomial logit models; Proportional odds model; Association models; generalized estimating equations (GEE); generalized linear mixed model (GLIMMIX); GSK models; Composite link functions. The students will need to work with R and SAS throughout the semester.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8002|Minimum Grade of B-|May not be taken concurrently.

STAT 8117. Clinical Trials. 3 Credit Hours.
Introduction to the special problems associated with medical trials on humans. Topics include randomization, sample-size determination, methods for early trial termination, and tests for superiority, equivalence, and non-inferiority. Also discussed are choice of endpoints, control, side effects, use of historical data, meta-analysis and ethics of experimentation on humans.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8002|Minimum Grade of B-|May not be taken concurrently
OR STAT 8004|Minimum Grade of B-|May not be taken concurrently.

STAT 8121. Statistical Computing. 3 Credit Hours.
Use of computers in the solution of statistical problems. Topics include: floating point architecture, random number generation, design of statistical software, computational linear algebra, numerical integration, optimization methods.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8004|Minimum Grade of B-|May not be taken concurrently.

STAT 8122. Advanced SAS Programming. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(MATH 1042|Minimum Grade of B-|May not be taken concurrently
OR MATH 1942|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8001|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8002|Minimum Grade of B-|May not be taken concurrently).

STAT 8123. Time Series Analysis and Forecasting. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8002|Minimum Grade of B-|May not be taken concurrently
OR STAT 8101|Minimum Grade of B-|May not be taken concurrently)
AND (ECON 8009|Minimum Grade of B-|May not be taken concurrently
OR MATH 3032|Minimum Grade of B-|May not be taken concurrently).

STAT 9001. Advanced Statistical Inference I. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(MATH 1042|Minimum Grade of B-|May not be taken concurrently
OR MATH 1942|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8001|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8002|Minimum Grade of B-|May not be taken concurrently).
STAT 9002. Advanced Statistical Inference II. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits.

STAT 9090. Special Topics. 1 to 6 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
College Restrictions: Must be enrolled in one of the following Colleges: Business & Mngmnt, Fox School
Repeatability: This course may be repeated for additional credit.

STAT 9101. Time Series Analysis II. 3 Credit Hours.
Theory and application of multiple time series analysis and special topics. Covers transfer function models, time series regression with autocorrelated errors, ARCH and GARCH models, vector time series models, cointegration, state space models, long memory processes and nonlinear processes, time series aggregation and disaggregation.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8105|Minimum Grade of B-|May not be taken concurrently.

STAT 9103. Stat Lrng & Data Mining. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8001|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8002|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8003|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8004|Minimum Grade of B-|May not be taken concurrently).

STAT 9106. Linear Models II. 3 Credit Hours.
Continuation of Stat 8106, covers the theory and practice of analyzing multivariate repeated/correlated non-Gaussian responses, with or without missing observations. Missing at random (MAR) models; informative missingness; EM algorithm; multiple imputations; quasi-likelihood estimation; generalized estimating equations (GEE); transition models; Gibbs sampling; Markov Chain Monte-Carlo (MCMC) technique. The students will need to work with R, SAS and WinBugs throughout the semester.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8106|Minimum Grade of B-|May not be taken concurrently.

STAT 9107. Design of Experiments II. 3 Credit Hours.
Covers symmetric and asymmetrical factorial experiments, fractional replication, split plot design, balanced and partially balanced incomplete block designs without and with recovery of interblock information and lattice designs.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8107|Minimum Grade of B-|May not be taken concurrently.

STAT 9108. Multivariate Analysis II. 3 Credit Hours.
A study of specialized topics in multivariate analysis.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8002|Minimum Grade of B-|May not be taken concurrently)
AND (STAT 8108|Minimum Grade of B-|May not be taken concurrently).

STAT 9114. Survival Analysis II. 3 Credit Hours.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
STAT 8114|Minimum Grade of B-|May not be taken concurrently.
STAT 9116. Statistical Genetics: An Advanced Graduate Course. 3 Credit Hours.
An advanced level graduate course in statistical genetics covering the basic concepts of allele, gene, genotype, phenotype, Hardy-Weinberg equilibrium, linkage analysis, QTL mapping using marker analysis, functional mapping for longitudinal traits, analysis of ultra-high dimensional data, genome-wide association studies.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may not be repeated for additional credits
Pre-requisites:
(STAT 8001|Minimum Grade of B|May not be taken concurrently)
AND (STAT 8002|Minimum Grade of B|May not be taken concurrently)
AND (STAT 8003|Minimum Grade of B|May not be taken concurrently)
AND (STAT 8004|Minimum Grade of B|May not be taken concurrently).

STAT 9180. Seminar in New Topics in Statistics. 3 Credit Hours.
Special topics in Statistics.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 9183. Directed Study in Statistics. 1 to 6 Credit Hour.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 9190. Seminar in New Topics in Statistics. 3 Credit Hours.
Special topics in Statistics.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 9994. Preliminary Examination Preparation. 1 Credit Hour.
Preparation for preliminary examinations.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 9998. Pre-Dissertation Research. 1 Credit Hour.
Proposal design. Registration required until approved proposal is on file at the Graduate School.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Repeatability: This course may be repeated for additional credit.

STAT 9999. Dissertation Research. 1 to 12 Credit Hour.
For students elevated to candidacy and doing their dissertation research. Registration required until successful defense and graduation.
Level Registration Restrictions: Must be enrolled in one of the following Levels: Graduate
Student Attribute restrictions: Must be enrolled in one of the following Student Attributes: Dissertation Writing Student
Repeatability: This course may be repeated for additional credit.